A subdivision method for computing nearest gcd with certification

Theoretical Computer Science - Tập 412 - Trang 4493-4503 - 2011
Guillaume Chèze1, André Galligo2,3, Bernard Mourrain3, Jean-Claude Yakoubsohn1
1Institut Mathématique de Toulouse, équipe MIP, Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse, France
2Laboratoire J.A. Dieudonné, UMR CNRS 6621, Université de Nice Sophia-Antipolis, Parc Valrose, 06108 Nice Cedex 02, France
3GALAAD, INRIA Méditerranée, 2004 route des Lucioles, BP 93, 06902 Sophia Antipolis, France

Tài liệu tham khảo

Arnon, 1988, A polynomial-time algorithm for the topological type of a real algebraic curve, J. Symbolic Comput., 5, 213, 10.1016/S0747-7171(88)80013-0 Beckermann, 1998, When are two numerical polynomials relatively prime?, J. Symbolic Comput., 26, 677, 10.1006/jsco.1998.0234 Bini, 1994, Polynomial and matrix computations Bini, 2007, Structured matrix-based methods for polynomial ϵ-gcd: analysis and comparisons, 9 Blum, 1996, Complexity and real computation: a manifesto, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 6, 3, 10.1142/S0218127496001818 Brown, 1971, On Euclid’s algorithm and the computation of polynomial greatest common divisors, J. Assoc. Comput. Mach., 18, 478, 10.1145/321662.321664 Chèze, 2009, Computing Nearest Gcd with Certification, 29 R.M. Corless, P.M. Gianni, B.M. Trager, S.M. Watt, The singular value decomposition for polynomial systems, in: A.H.M Levelt (Ed.), Proc. Internat. Symp. Symbolic Algebraic Comput., ISSAC ’95, 1995, pp. 195–207. Dedieu, 1996, Computing the distance from a point to an algebraic hypersurface, vol.~32, 285 Emiris, 1996, vol.~32, 323 Emiris, 1997, Certified approximate univariate GCDs, J. Pure Appl. Algebra, 117 & 118, 229, 10.1016/S0022-4049(97)00013-3 Giusti, 2005, On location and approximation of clusters of zeros of analytic functions, Found. Comput. Math., 5, 257, 10.1007/s10208-004-0144-z Hribernig, 1997, Detection and validation of clusters of polynomial zeros, J. Symbolic Comput., 24, 667, 10.1006/jsco.1997.0160 Kaltofen, 2007, Structured low rank approximation of a Sylvester matrix, 69 Karmarkar, 1998, On approximate GCDs of univariate polynomials, J. Symbolic Comput., 26, 653, 10.1006/jsco.1998.0232 Manocha, 1994, Algorithms for intersecting parametric and algebraic curves: I simple intersections, ACM Trans. Graph., 13, 73, 10.1145/174462.174617 Nesterov, 1994, Interior-point polynomial algorithms in convex programming, vol.~13 Nie, 2008, Global minimization of rational functions and the nearest GCDs, J. Global Optim., 40, 697, 10.1007/s10898-006-9119-8 Matu-Tarow Noda, Tateaki Sasaki, Approximate GCD and its application to ill-conditioned algebraic equations, in: Proceedings of the International Symposium on Computational Mathematics, Matsuyama, 1990, vol. 38, 1991, pp. 335–351. Pan, 2001, Computation of approximate polynomial GCDs and an extension, Inform. and Comput., 167, 71, 10.1006/inco.2001.3032 D. Rupprecht, Eléments de Géométrie Algébrique Approchée: étude du PGCD et de la factorisation, Ph.D. Thesis, Université de Nice - Sophia Antipolis, January 2000. Schönhage, 1985, Quasi-gcd computations, J. Complexity, 1, 118, 10.1016/0885-064X(85)90024-X Shub, 1993, Complexity of Bézout’s theorem. I. Geometric aspects, J. Amer. Math. Soc., 6, 459 Terui, 2009, An iterative method for calculating approximate gcd of univariate polynomials, 351 Tanabe, 1980, A geometric method in nonlinear programming, J. Optim. Theory Appl., 30, 181, 10.1007/BF00934495 Zhonggang Zeng, The approximate GCD of inexact polynomials. Part I: a univariate algorithm, Preprint 2004.