A subclass of boundary measures and the convex combination problem for Herglotz–Nevanlinna functions in several variables

Springer Science and Business Media LLC - Tập 85 - Trang 441-472 - 2019
Mitja Nedic1
1Department of Mathematics, Stockholm University, Stockholm, Sweden

Tóm tắt

In this paper, we begin by investigating a particular subclass of boundary measures of Herglotz-Nevanlinna functions in two variables. Based on this, we then proceed to solve the convex combination problem for Herglotz-Nevanlinna functions in several variables.

Tài liệu tham khảo

J. Agler, J. E. McCarthy and N. J. Young, Operator monotone functions and Löwner functions of several variables, Ann. Math. (2), 176 (2012), 1783–1826. J. Agler, R. Tully-Doyle and N. J. Young, Nevanlinna representations in several variables, J. Funct. Anal., 270 (2016), 3000–3046. N. I. Akhiezer The classical moment problem and some related questions in analysis, Hafner Publishing Co., New York, 1965. A. Bernland, A. Luger and M. Gustafsson, Sum rules and constraints on passive systems, J. Phys. A: Math. Theor., 44 (2011), 145–205. V. I. Bogachev Measure Theory, Vol. I and II, Springer-Verlag, Berlin, 2007. O. Brune, Synthesis of a finite two-terminal network whose driving-point impedance is a prescribed function of frequency, MIT J. Math. Phys., 10 (1931), 191–236. W. Cauer, The Poisson integral for functions with positive real part, Bull. Amer. Math. Soc., 38 (1932), 713–717. Yu. N. Drozhzhinov and V. S. Vladimirov, Holomorphic functions in a polydisc with non-negative imaginary part, Mat. Zametki, 15 (1974), 55–61; English transl.: Math. Notes, 15 (1974), 31–34. J. J. Duistermaat and J. A. C. Kolk Distributions - theory and applications, Translated from the Dutch by J. P. van Braam Houckgeest, Cornerstones, Birkhäuser Boston, Inc., Boston, MA, 2010. K. Golden and G. Papanicolaou, Bounds for effective parameters of heterogeneous media by analytic continuation, Comm. Math. Phys., 90 (1983), 473–491. K. Golden and G. Papanicolaou, Bounds for effective parameters of multicomponent media by analytic continuation, J. Statist. Phys., 40 (1985), 655–667. Y. Ivanenko, M. Gustafsson, B. L. G. Jonsson, A. Luger, B. Nilsson, S. Nordebo and J. Toft, Passive approximation and optimization with B-splines, SIAM J. Appl. Math., 79 (2019), 436–458. I. S. Kac and M. G. Krein, R-functions-analytic functions mapping the upper half-plane into itself, Amer. Math. Soc. Transl., 103 (1974), 1–18. M. G. KreÏn and H. Langer, Über einige Fortsetzungsprobleme, die eng mit der Theorie hermitescher Operatoren im Raume Πκ zusammenhängen. I. Einige Funktionenklassen und ihre Darstellungen, Math. Nach., 77 (1977), 187–236 (in German). H. Langer and B. Textorius, On generalized resolvents and Q-functions of symmetric linear relations (subspaces) in Hilbert space, Pacific J. Math., 72 (1977), 135–165. A. Luger and M. Nedic, A characterization of Herglotz-Nevanlinna functions in two variables via integral representations, Ark. Mat., 55 (2017), 199–216. A. Luger and M. Nedic, Herglotz-Nevanlinna functions in several variables, J. Math. Anal. Appl., 472 (2019), 1189–1219. G. W. Milton (editor), Extending the Theory of Composites to Other Areas of Science, BookBaby Print, 2016. G. W. Milton The Theory of Composites, Cambridge Monographs on Applied and Computational Mathematics, Cambridge University Press, 2002. R. Nevanlinna, Asymptotische Entwicklungen beschränkter Funktionen und das Stieltjessche Momentenproblem, Ann. Acad. Sci. Fenn. (A), 18 (1922), 1–53. B. Simon, The classical moment problem as a self-adjoint finite difference operator, Adv. Math., 137 (1998), 82–203. G. Teschl, Mathematical models in quantum mechanics, Graduate Studies in Mathematics, vol. 157, Amer. Math. Soc., Providence, RI, 2014. V. S. Vladimirov Generalized functions in mathematical physics, “Nauka”, 1979; English transl.: Mir publishers, Moscow, 1979. V. S. Vladimirov Holomorphic functions with non-negative imaginary part in a tubular domain over a cone, Mat. Sb., 79 (1969), 128–152; English transl.: Math. USSR-Sb., 8 (1969), 25–146.