A study on the influence of particle shape on the mechanical interactions of granular media in a hopper using the Discrete Element Method

Powder Technology - Tập 278 - Trang 286-305 - 2015
D. Höhner1, S. Wirtz1, Viktor Scherer1
1Department of Energy Plant Technology, Ruhr University Bochum, 44780 Bochum, Germany

Tóm tắt

Từ khóa


Tài liệu tham khảo

Cundall, 1979, Discrete numerical model for granular assemblies, Geotechnique, 29, 47, 10.1680/geot.1979.29.1.47

Zhu, 2008, Discrete particle simulation of particulate systems: A review of major applications and findings, Chem. Eng. Sci., 63, 5728, 10.1016/j.ces.2008.08.006

Cleary, 2002, DEM modelling of industrial granular flows : 3D case studies and the effect of particle shape on hopper discharge, Appl. Math. Model., 26, 89, 10.1016/S0307-904X(01)00050-6

Cleary, 2010, DEM prediction of industrial and geophysical particle flows, Particuology, 8, 106, 10.1016/j.partic.2009.05.006

Markauskas, 2009, Investigation of adequacy of multi-sphere approximation of elliptical particles for DEM simulations, Granul. Matter, 12, 107, 10.1007/s10035-009-0158-y

Höhner, 2013, Experimental and numerical investigation on the influence of particle shape and shape approximation on hopper discharge using the discrete element method, Powder Technol., 235, 614, 10.1016/j.powtec.2012.11.004

Kruggel-Emden, 2008, A study on the validity of the multi-sphere Discrete Element Method, Powder Technol., 188, 153, 10.1016/j.powtec.2008.04.037

Lin, 1995, Contact detection algorithms for three-dimensional ellipsoids in discrete element modelling, Int. J. Numer. Anal. Methods Geomech., 19, 653, 10.1002/nag.1610190905

Lin, 1997, A three-dimensional discrete element model using arrays of ellipsoids, Geotechnique, 47, 319, 10.1680/geot.1997.47.2.319

Wellmann, 2008, A contact detection algorithm for superellipsoids based on the common-normal concept, Eng. Comput., 25, 432, 10.1108/02644400810881374

Wellmann, 2008, Comparison of the macroscopic behavior of granular materials modeled by different constitutive equations on the microscale, Finite Elem. Anal. Des., 44, 259, 10.1016/j.finel.2007.11.007

Lu, 2012, Critical assessment of two approaches for evaluating contacts between super-quadric shaped particles in DEM simulations, Chem. Eng. Sci., 78, 226, 10.1016/j.ces.2012.05.041

Favier, 1999, Shape representation of axi-symmetrical, non-spherical particles in discrete element simulation using multi-element model particles, Eng. Comput., 16, 467, 10.1108/02644409910271894

Favier, 2001, Modeling nonspherical particles using multisphere discrete elements, J. Eng. Mech., 127, 971, 10.1061/(ASCE)0733-9399(2001)127:10(971)

Jensen, 1999, DEM simulation of granular media – structure interface: effects of surface roughness and particle shape, Int. J. Numer. Anal. Methods Geomech., 23, 531, 10.1002/(SICI)1096-9853(199905)23:6<531::AID-NAG980>3.0.CO;2-V

Vu-Quoc, 2000, A 3-D discrete-element method for dry granular flows of ellipsoidal particles, Comput. Methods Appl. Mech. Eng., 187, 483, 10.1016/S0045-7825(99)00337-0

Cundall, 1988, Formulation of a three-dimensional distinct element model – Part I. A scheme to detect and represent contacts, Int. J. Rock Mech. Min. Sci. Geomech., 25, 107, 10.1016/0148-9062(88)92293-0

Nezami, 2004, A fast contact detection algorithm for 3-D discrete element method, Comput. Geotech., 31, 575, 10.1016/j.compgeo.2004.08.002

Fraige, 2008, Vibration induced flow in hoppers: DEM 2D polygon model, Particuology, 6, 455, 10.1016/j.partic.2008.07.019

Wachs, 2012, Grains3D, a flexible DEM approach for particles of arbitrary convex shape – Part I: Numerical model and validations, Powder Technol., 224, 374, 10.1016/j.powtec.2012.03.023

Langston, 2004, Distinct element modelling of non-spherical frictionless particle flow, Chem. Eng. Sci., 59, 425, 10.1016/j.ces.2003.10.008

Williams, 1995, A linear complexity intersection algorithm for discrete element simulation of arbitrary geometries, Eng. Comput., 12, 185, 10.1108/02644409510799550

Mollon, 2012, Fourier-Voronoi-based generation of realistic samples for discrete modeling of granular materials, Granul. Matter, 14, 621, 10.1007/s10035-012-0356-x

Mollon, 2013, Characterization of fluctuations in granular hopper flow, Granul. Matter, 15, 827, 10.1007/s10035-013-0445-5

Mollon, 2013, Generating realistic 3D sand particles using Fourier descriptors, Granul. Matter, 15, 95, 10.1007/s10035-012-0380-x

Mollon, 2014, 3D generation of realistic granular samples based on random fields theory and Fourier shape descriptors, Comput. Methods Appl. Mech. Eng., 279, 46, 10.1016/j.cma.2014.06.022

Kohring, 1995, Computer simulations of critical, non-stationary granular flow through a hopper, Comput. Methods Appl. Mech. Eng., 124, 273, 10.1016/0045-7825(94)00743-7

Fraige, 2008, Distinct element modelling of cubic particle packing and flow, Powder Technol., 186, 224, 10.1016/j.powtec.2007.12.009

Tao, 2010, Discrete element method modeling of non-spherical granular flow in rectangular hopper, Chem. Eng. Process. Process Intensif., 49, 151, 10.1016/j.cep.2010.01.006

Wang, 2011, Particle shape effects in discrete element modelling of cohesive angular particles, Granul. Matter, 13, 1, 10.1007/s10035-010-0217-4

Fraige, 2011, Polyhedral particles hopper flowrate predictions using Discrete Element Method, Chem. Prod. Process. Model., 6

Mack, 2011, Experimental validation of polyhedral discrete element model, Powder Technol., 214, 431, 10.1016/j.powtec.2011.08.043

González-Montellano, 2011, Validation and experimental calibration of 3D discrete element models for the simulation of the discharge flow in silos, Chem. Eng. Sci., 66, 5116, 10.1016/j.ces.2011.07.009

Di Maio, 2004, Analytical solution for the problem of frictional-elastic collisions of spherical particles using the linear model, Chem. Eng. Sci., 59, 3461, 10.1016/j.ces.2004.05.014

Di Renzo, 2004, Comparison of contact-force models for the simulation of collisions in DEM-based granular flow codes, Chem. Eng. Sci., 59, 525, 10.1016/j.ces.2003.09.037

Kruggel-Emden, 2007, Review and extension of normal force models for the Discrete Element Method, Powder Technol., 171, 157, 10.1016/j.powtec.2006.10.004

Kruggel-Emden, 2008, A study on tangential force laws applicable to the discrete element method (DEM) for materials with viscoelastic or plastic behavior, Chem. Eng. Sci., 63, 1523, 10.1016/j.ces.2007.11.025

Kruggel-Emden, 2008

Schäfer, 1996, Force schemes in simulations of granular materials, J. Phys. I, 6, 5

Walton, 1984, Application of molecular dynamics to macroscopic particles, Int. J. Eng. Sci., 22, 1097, 10.1016/0020-7225(84)90110-1

Beer, 1976

Ting, 1992, A robust algorithm for ellipse-based discrete element modelling of granular materials, Comput. Geotech., 13, 175, 10.1016/0266-352X(92)90003-C

Wadell, 1932, Volume, shape and roundness of rock particles, J. Geol., 40, 443, 10.1086/623964

Krumbein, 1941, Measurement and geological significance of shape and roundness of sedimentary particles, J. Sediment. Petrol., 11, 64, 10.1306/D42690F3-2B26-11D7-8648000102C1865D

Barrett, 1980, The shape of rock particles, Sedimentology, 27, 291, 10.1111/j.1365-3091.1980.tb01179.x

Cho, 2006, Particle shape effects on packing density, stiffness, and strength: Natural and crushed sands, J. Geotech. Geoenviron. Eng., 132, 591, 10.1061/(ASCE)1090-0241(2006)132:5(591)

Sukumaran, 2001, Quantitative characterisation of the geometry of discrete particles, Geotechnique, 51, 619, 10.1680/geot.2001.51.7.619

Milewski, 1973, A study of the packing of milled fibreglass and glass beads, Composites, 4, 258, 10.1016/0010-4361(73)90392-3

Stokely, 2003, Two-dimensional packing in prolate granular materials, Phys. Rev. E, 67, 10.1103/PhysRevE.67.051302

Kanzaki, 2011, Stress distribution of faceted particles in a silo after its partial discharge, Eur. Phys. J. E: Soft Matter., 34, 10.1140/epje/i2011-11133-5

Kruggel-Emden, 2008, Selection of an appropriate time integration scheme for the discrete element method (DEM), Comput. Chem. Eng., 32, 2263, 10.1016/j.compchemeng.2007.11.002