A study on limit cycles in nearly symmetric cellular neural networks

M. Di Marco1, M. Forti1, A. Tesi2
1Dipartimento di Ingegneria dellE28099lnformazione, Universitdá di Siena, Siena, Italy
2Dipartimento di Sistemi e Informatica, Universitá di Firenze, Florence, Italy

Tóm tắt

It is known that symmetric cellular neural networks (CNNs) are completely stable, i.e., each trajectory converges towards some equilibrium point. The paper addresses the issue of the loss of CNN complete stability caused by errors in the implementation of the nominal symmetric interconnections. The main result is a structural condition which implies the existence of stable limit cycles generated via Hopf bifurcations, even for arbitrarily small perturbations of the nominal interconnections. Furthermore, analytic results providing an approximate relationship between the limit cycle features and the fundamental CNN parameters are presented.

Từ khóa

#Limit-cycles #Intelligent networks #Cellular neural networks #Neurons #Symmetric matrices #Bifurcation #Neural networks #Differential equations #Robust stability #Stationary state

Tài liệu tham khảo

10.1109/31.7600 10.1142/S0218127400000852 10.1142/S0218127499000882 10.1109/31.41297 farkas, 1994, Periodic Motions, 10.1007/978-1-4757-4211-4 10.1109/TCSI.2002.800481 10.1109/72.238320 lancaster, 1985, The Theory of Matrices 10.1016/0893-6080(89)90018-X