A study on SBN-POP composites for pyroelectric sensing applications
Tóm tắt
Pyroelectric performance of the composites of plaster of Paris (POP) and the lead-free Sr0.5Ba0.5Nb2O6 (SBN) ceramic have been studied in this paper. SBN-POP composites with 30, 40, 50, and 60% SBN content by weight referred as SBN30, SBN40, SBN50, and SBN60 have been studied. The dielectric constants for SBN30, SBN40, SBN50, and SBN60 composites are obtained as 10.51, 21.62, 43.61, and 57, respectively at room temperature (25 °C). The maximum open-circuit voltages in the range of 31 to 103 mV could be obtained by subjecting the SBN-POP composite samples to temperature gradient by blowing hot and cold air. Further maximum voltages in the range of 8 to 34 mV and maximum current in the range of 2.9 to 18 nA could be obtained across 1 MΩ resistance. The SBN-POP composites seem to be suitable candidate to be used as pyroelectric sensors.
Tài liệu tham khảo
Whatmore, R.: Pyroelectric devices and materials. Rep Prog Phys. 49(12), 1335 (1986)
Lines, M.E., Glass, A.M.: Principles and Applications of Ferroelectrics and Related Materials. Oxford university press, Oxford (1977)
Moulson, A.J., Herbert, J.M.: Electroceramics: Materials, Properties, Applications. John Wiley & Sons, Hoboken (2003)
Hossain, A., Rashid, M.H.: Pyroelectric detectors and their applications. IEEE Trans Ind Appl. 27(5), 824–829 (1991)
Aggarwal, M., Batra, A., Guggilla, P., Edwards, M., Penn, B., Currie Jr, J.: Pyroelectric materials for uncooled infrared detectors: processing, properties, and applications. (2010)
Whatmore, R.W.: Recent advances in pyroelectric ceramics and thin films for applications in uncooled infra-red sensor arrays. In: Advances in Science and Technology, pp. 2503–2513. Trans Tech Publ (2006)
Holden, A.J.: Pyroelectric sensor arrays for detection and thermal imaging. In: SPIE Defense, Security, and Sensing, pp. 87041N–87041N-87010. International Society for Optics and Photonics (2013)
Moghavvemi, M., Seng, L.C.: Pyroelectric infrared sensor for intruder detection. In: TENCON 2004. 2004 I.E. Region 10 Conference, pp. 656–659. IEEE (2004)
Shankar, M., Burchett, J.B., Hao, Q., Guenther, B.D., Brady, D.J.: Human-tracking systems using pyroelectric infrared detectors. Opt Eng. 45(10), 106401–106410 (2006)
Fang, J.-S., Hao, Q., Brady, D.J., Guenther, B.D., Hsu, K.Y.: Real-time human identification using a pyroelectric infrared detector array and hidden Markov models. Opt Express. 14(15), 6643–6658 (2006)
Wendong, Z., Qiulin, T., Jun, L., Chenyang, X., Jijun, X., Xiujian, C.: Two-channel IR gas sensor with two detectors based on LiTaO 3 single-crystal wafer. Opt Laser Technol. 42(8), 1223–1228 (2010)
Roy, S., Basu, S.: Improved zinc oxide film for gas sensor applications. Bull Mater Sci. 25(6), 513–515 (2002)
Christofides, C., Mandelis, A.: Solid-state sensors for trace hydrogen gas detection. J Appl Phys. 68(6), R1–R30 (1990)
Lee, M., Guo, R., Bhalla, A.S.: Pyroelectric sensors. J Electroceram. 2(4), 229–242 (1998)
Shibata, K., Takeuchi, K., Tanaka, T., Nishikawa, S., Kuroki, Y., Nakano, S., Kuwano, Y.: New structure gas sensor using a modulation-type pyroelectric ir detector. Ferroelectrics. 95(1), 117–120 (1989)
Shibata, K., Yokoo, T., Takeuchi, K., Tanaka, T., Kamino, M., Nishikawa, S., Nakano, S., Kuwano, Y.: A new-structure IR gas sensor. Jpn J Appl Phys. 26(11R), 1898 (1987)
Rogalski, A.: Infrared detectors: status and trends. Prog Quantum Electron. 27(2), 59–210 (2003)
Yao, S., Ren, W., Ji, H., Wu, X., Shi, P., Xue, D., Ren, X., Ye, Z.-G.: High pyroelectricity in lead-free 0.5 Ba (Zr0. 2Ti0. 8) O3–0.5 (Ba0. 7Ca0. 3) TiO3 ceramics. J Phys D Appl Phys. 45(19), 195301 (2012)
Lau, S.T., Cheng, C., Choy, S., Lin, D., Kwok, K., Chan, H.L.: Lead-free ceramics for pyroelectric applications. J Appl Phys. 103(10), 104105 (2008)
Vats, G., Chauhan, A., Vaish, R.: Thermal energy harvesting using bulk lead-free ferroelectric ceramics. Int. J. Appl. Ceram. Technol 12(S1), E49–E54 (2015)
Bowen, C.R., Taylor, J., LeBoulbar, E., Zabek, D., Chauhan, A., Vaish, R.: Pyroelectric materials and devices for energy harvesting applications. Energy Environ Sci. 7(12), 3836–3856 (2014)
Sharma, M., Chauhan, A., Vaish, R., Chauhan, V.S.: Pyroelectric materials for solar energy harvesting: a comparative study. Smart Mater Struct. 24(10), 105013 (2015)
Kwok, K., Wong, H.: Piezoelectric and pyroelectric properties of Cu-doped CaBi4Ti4O15 lead-free ferroelectric ceramics. J Phys D Appl Phys. 42(9), 095419 (2009)
Venet, M., Santos, I., Eiras, J., Garcia, D.: Potentiality of SBN textured ceramics for pyroelectric applications. Solid State Ionics. 177(5), 589–593 (2006)
Zhang, J., Dong, X., Cao, F., Guo, S., Wang, G.: Enhanced pyroelectric properties of Ca x (Sr0. 5Ba0. 5) 1− x Nb2O6 lead-free ceramics. Appl Phys Lett. 102(10), 102908 (2013)
Qu, Y.-Q., Li, A.-D., Shao, Q.-Y., Tang, Y.-F., Wu, D., Mak, C., Wong, K., Ming, N.-B.: Structure and electrical properties of strontium barium niobate ceramics. Mater Res Bull. 37(3), 503–513 (2002)
Yao, Y., Mak, C.L., Wong, K.H., Lu, S., Xu, Z.: Effects of rare-earth dopants on the ferroelectric and pyroelectric properties of strontium barium niobate ceramics. Int J Appl Ceram Technol. 6(6), 671–678 (2009)
Newnham, R., Skinner, D., Klicker, K., Bhalla, A., Hardiman, B., Gururaja, T.: Ferroelectric ceramic-plastic composites for piezoelectric and pyroelectric applications. Ferroelectrics. 27(1), 49–55 (1980)
Newnham, R., Skinner, D., Cross, L.: Connectivity and piezoelectric-pyroelectric composites. Mater Res Bull. 13(5), 525–536 (1978)
Dias, C., Das Gupta, D.: Piezo-and pyroelectricity in ferroelectric ceramic-polymer composites. In: Key Engineering Materials, pp. 217–248. Trans Tech Publ (1994)
Lam, K., Wong, Y., Tai, L., Poon, Y., Shin, F.G.: Dielectric and pyroelectric properties of lead zirconate titanate/polyurethane composites. J Appl Phys. 96(7), 3896–3899 (2004)
Batra, A., Aggarwal, M., Edwards, M.E., Bhalla, A.: Present status of polymer: ceramic composites for pyroelectric infrared detectors. Ferroelectrics. 366(1), 84–121 (2008)
Wen, S., Chung, D.: Pyroelectric behavior of cement-based materials. Cem Concr Res. 33(10), 1675–1679 (2003)