A study of the capacity fade of porous NiO/Ni foam as negative electrode for lithium-ion batteries

Ionics - Tập 22 Số 2 - Trang 173-184 - 2016
Asma Rahman1, Cuié Wen1,2
1Faculty of Engineering and Industrial Science, Swinburne University of Technology, Hawthorn, Australia
2School of Aerospace Mechanical and Manufacturing Engineering, RMIT University, Melbourne, Australia

Tóm tắt

Từ khóa


Tài liệu tham khảo

IEA World energy outlook (2013) (International Energy Agency 2013) International Energy Agency. http://www.worldenergyoutlook.org/media/weowebsite/2013/WEO2013_Ch06_Renewables.pdf . Accessed 28/01/2015 2015

Mohr S, Wang J, Ellem G, Ward J, Giurco D (2015) Projection of world fossil fuels by country. Fuel 141:120–135

Lee SH, Harding JR, Liu DS, D’Arcy JM, Shao-Horn Y, Hammond PT (2014) Li-anode protective layers for Li rechargeable batteries via layer-by-layer approaches. Chem Mater 26(8):2579–2585

Bruce PG, Freunberger SA, Hardwick LJ, Tarascon JM (2012) Li-O2 and Li-S batteries with high energy storage. Nat Mater 11(1):19–29

Dunn B, Kamath H, Tarascon JM (2011) Electrical energy storage for the grid: a battery of choices. Science 334(6058):928–935

Spinner N, Zhang L, Mustain WE (2014) Investigation of metal oxide anode degradation in lithium-ion batteries via identical-location TEM. J Mater Chem A 2(6):1627–1630

Kumar Rai A, Tuan Anh L, Park CJ, Kim J (2013) Electrochemical study of NiO nanoparticles electrode for application in rechargeable lithium-ion batteries. Ceram Int 39(6):6611–6618. doi: 10.1016/j.ceramint.2013.01.097

Wang C, Wang D, Wang Q, Chen H (2010) Fabrication and lithium storage performance of three-dimensional porous NiO as anode for lithium-ion battery. J Power Sources 195(21):7432–7437

Liang C, Gao M, Pan H, Liu Y, Yan M (2013) Lithium alloys and metal oxides as high-capacity anode materials for lithium-ion batteries. J Alloys Compd 575:246–256. doi: 10.1016/j.jallcom.2013.04.001

Cabana J, Monconduit L, Larcher D, Palacín MR (2010) Beyond intercalation-based Li-ion batteries: the state of the art and challenges of electrode materials reacting through conversion reactions. Adv Mater 22(35):E170–E192. doi: 10.1002/adma.201000717

Zhang WJ (2011) Lithium insertion/extraction mechanism in alloy anodes for lithium-ion batteries. J Power Sources 196(3):877–885. doi: 10.1016/j.jpowsour.2010.08.114

An K, Barai P, Smith K, Mukherjee PP (2014) Probing the thermal implications in mechanical degradation of lithium-ion battery electrodes. J Electrochem Soc 161(6):A1058–A1070

Arora P, White RE, Doyle M (1998) Capacity fade mechanisms and side reactions in lithium‐ion batteries. J Electrochem Soc 145(10):3647–3667

Wang C, Wu H, Chen Z, McDowell MT, Cui Y, Bao Z (2013) Self-healing chemistry enables the stable operation of silicon microparticle anodes for high-energy lithium-ion batteries. Nat Chem 5(12):1042–1048

Maleki H, Howard JN (2009) Internal short circuit in Li-ion cells. J Power Sources 191(2):568–574

Cai W, Wang H, Maleki H, Howard J, Lara-Curzio E (2011) Experimental simulation of internal short circuit in Li-ion and Li-ion-polymer cells. J Power Sources 196(18):7779–7783

Orendorff CJ, Roth EP, Nagasubramanian G (2011) Experimental triggers for internal short circuits in lithium-ion cells. J Power Sources 196(15):6554–6558. doi: 10.1016/j.jpowsour.2011.03.035

Aurbach D, Markovsky B, Rodkin A, Cojocaru M, Levi E, Kim H-J (2002) An analysis of rechargeable lithium-ion batteries after prolonged cycling. Electrochim Acta 47(12):1899–1911

Xiong M, Tang H, Wang Y, Pan M (2014) Ethylcellulose-coated polyolefin separators for lithium-ion batteries with improved safety performance. Carbohydr Polym 101:1140–1146

Mironova-Ulmane N, Kuzmin A, Steins I, Grabis J, Sildos I, Pärs M (2007) Raman scattering in nanosized nickel oxide NiO. J Phys Conf Ser 1:012039

Wood GC, Wright I, Ferguson J (1965) The oxidation of Ni and Co and of Ni/Co alloys at high temperatures. Corros Sci 5(9):645–661

Gulbransen EA, Andrew KF (1957) High temperature oxidation of high purity nickel between 750 and 1050 C. J Electrochem Soc 104(7):451–454

Baur J, Bartlett R, Ong J, Fassell W (1963) High‐pressure oxidation of metals, nickel in oxygen. J Electrochem Soc 110(3):185–189

Clarke DR (2002) Stress generation during high-temperature oxidation of metallic alloys. Curr Opinion Solid State Mater Sci 6(3):237–244

Venter A, Botha JR (2011) Optical and electrical properties of NiO for possible dielectric applications. S Afr J Sci 107(1–2):1–6

Liu C, Huntz AM, Lebrun JL (1993) Origin and development of residual stresses in the Ni/NiO system: in-situ studies at high temperature by x-ray diffraction. Mater Sci Eng A 160(1):113–126. doi: 10.1016/0921-5093(93)90504-8

Huntz A, Andrieux M, Molins R (2006) Relation between the oxidation mechanism of nickel, the microstructure and mechanical resistance of NiO films and the nickel purity II. Mechanical resistance of NiO films. Mater Sci Eng A 417(1):8–15

Fasaki I, Koutoulaki A, Kompitsas M, Charitidis C (2010) Structural, electrical and mechanical properties of NiO thin films grown by pulsed laser deposition. Appl Surf Sci 257(2):429–433. doi: 10.1016/j.apsusc.2010.07.006

Conde CF, Dominguez-Rodriguez A, Conde A, Marquez R (1976) Microhardness tests in nickel oxide single crystals. Phys Status Solidi A 33(1):K25–K29. doi: 10.1002/pssa.2210330154

Qi Y, Bruckel P, Lours P (2003) Interfacial toughness of the nickel–nickel oxide system. J Mater Sci Lett 22(5):371–374

Cabanas-Polo S, Bermejo R, Ferrari B, Sanchez-Herencia A (2012) Ni-NiO composites obtained by controlled oxidation of green compacts. Corros Sci 55:172–179

Yang W, Cheng G, Dong C, Bai Q, Chen X, Peng Z, Zhang Z (2014) NiO nanorod array anchored Ni foam as a binder-free anode for high-rate lithium ion batteries. J Mater Chem A 2(47):20022–20029

Huang P, Zhang X, Wei J, Pan J, Sheng Y, Feng B (2015) The fabrication of foam-like 3D mesoporous NiO-Ni as anode for high performance Li-ion batteries. Mater Res Bull 63:112–115

Ni S, Li T, Lv X, Yang X, Zhang L (2013) Designed constitution of NiO/Ni nanostructured electrode for high performance lithium ion battery. Electrochim Acta 91:267–274

Zhao W, Luo G, Wang CY (2015) Modeling nail penetration process in large-format Li-ion cells. J Electrochem Soc 162(1):A207–A217

Laruelle S, Grugeon S, Poizot P, Dolle M, Dupont L, Tarascon J (2002) On the origin of the extra electrochemical capacity displayed by MO/Li cells at low potential. J Electrochem Soc 149(5):A627–A634

Sun X, Si W, Liu X, Deng J, Xi L, Liu L, Yan C, Schmidt OG (2014) Multifunctional Ni/NiO hybrid nanomembranes as anode materials for high-rate Li-ion batteries. Nano Energy 9:168–175

Kundu M, Ng CCA, Petrovykh DY, Liu L (2013) Nickel foam supported mesoporous MnO2 nanosheet arrays with superior lithium storage performance. Chem Commun 49(76):8459–8461

Ni S, Zhang J, Lv X, Yang X, Zhang L (2015) Superior electrochemical performance of Li3VO4/NiO/Ni electrode via a coordinated electrochemical reconstruction. J Power Sources 291:95–101. doi: 10.1016/j.jpowsour.2015.05.015

Ni S, Ma J, Zhang J, Yang X, Zhang L (2015) Excellent electrochemical performance of NiV3O8/natural graphite anodes via novel in situ electrochemical reconstruction. Chem Commun 51(27):5880–5882. doi: 10.1039/c5cc00486a

Ni S, Lv X, Li T, Yang X, Zhang L, Ren Y (2013) A novel electrochemical activation effect induced morphology variation from massif-like CuxO to forest-like Cu2O nanostructure and the excellent electrochemical performance as anode for Li-ion battery. Electrochim Acta 96:253–260. doi: 10.1016/j.electacta.2013.02.106

Kolb D, Schneider J (1986) Surface reconstruction in electrochemistry: Au (100-(5 × 20), Au (111)-(1 × 23) and Au(110)-(1 × 2). Electrochim Acta 31(8):929–936

Schneider J, Kolb D (1988) Potential-induced surface reconstruction of Au (100). Surf Sci 193(3):579–592

Stickney JL, Villegas I, Ehlers CB (1989) In situ restoration of atomically well-ordered copper single-crystal electrode surfaces. J Am Chem Soc 111(16):6473–6474

Cali GJ, Berry GM, Bothwell ME, Soriaga MP (1991) Electrochemical regeneration of clean and well-ordered Pd (111) surfaces. J Electroanal Chem Interfacial Electrochem 297(2):523–528

Rahman MA, Wen C (2015) Nanogravel structured NiO/Ni foam as electrode for high performance lithium-ion batteries. IONICS. doi: 10.1007/s11581-015-1475-2

Fang W, Ramadass P, Zhang ZJ (2014) Study of internal short in a Li-ion cell—II. Numerical investigation using a 3D electrochemical-thermal model. J Power Sources 248:1090–1098

Orazem ME, Tribollet B (2011) Electrochemical impedance spectroscopy, 48. Wiley, Hoboken

Moss P, Au G, Plichta E, Zheng J (2008) An electrical circuit for modeling the dynamic response of Li-ion polymer batteries. J Electrochem Soc 155(12):A986–A994

Love CT, Baturina OA, Swider-Lyons KE (2015) Observation of lithium dendrites at ambient temperature and below. ECS Electrochem Lett 4(2):A24–A27

Tröltzsch U, Kanoun O, Tränkler H-R (2006) Characterizing aging effects of lithium ion batteries by impedance spectroscopy. Electrochim Acta 51(8):1664–1672

Winter M, Novák P, Monnier A (1998) Graphites for lithium‐ion cells: the correlation of the first‐cycle charge loss with the Brunauer‐Emmett‐Teller surface area. J Electrochem Soc 145(2):428–436

Wang C, Appleby AJ, Little FE (2001) Electrochemical impedance study of initial lithium ion intercalation into graphite powders. Electrochim Acta 46(12):1793–1813

Wang DW, Li F, Fang HT, Liu M, Lu GQ, Cheng HM (2006) Effect of pore packing defects in 2D ordered mesoporous carbons on ionic transport. J Phys Chem B 110(17):8570–8575. doi: 10.1021/jp0572683

Yuan D, Zeng J, Kristian N, Wang Y, Wang X (2009) Bi2O3 deposited on highly ordered mesoporous carbon for supercapacitors. Electrochem Commun 11(2):313–317. doi: 10.1016/j.elecom.2008.11.041

Rodrigues S, Munichandraiah N, Shukla A (1999) AC impedance and state-of-charge analysis of a sealed lithium-ion rechargeable battery. J Solid State Electrochem 3(7–8):397–405

Wang J, Gao G, Zhou X, Wu J, Yang H, Li Q, Wu G (2014) A facile method to prepare bi-phase lithium vanadate as cathode materials for Li-ion batteries. J Solid State Electrochem 18(9):2459–2467

Wang D, Yu Y, He H, Wang J, Zhou W, Abruña HD (2015) Template-free synthesis of hollow-structured Co3O4 nanoparticles as high-performance anodes for lithium-ion batteries. ACS Nano 9(2):1775–1781. doi: 10.1021/nn506624g

Sawai K, Ohzuku T (2003) Factors affecting rate capability of graphite electrodes for lithium-ion batteries. J Electrochem Soc 150(6):A674–A678

Dupont L, Laruelle S, Grugeon S, Dickinson C, Zhou W, Tarascon J-M (2008) Mesoporous Cr2O3 as negative electrode in lithium batteries: TEM study of the texture effect on the polymeric layer formation. J Power Sources 175(1):502–509

Kolb DM (1996) Reconstruction phenomena at metal-electrolyte interfaces. Prog Surf Sci 51(2):109–173. doi: 10.1016/0079-6816(96)00002-0

Giesen M, Beltramo G, Dieluweit S, Müller J, Ibach H, Schmickler W (2005) The thermodynamics of electrochemical annealing. Surf Sci 595(1–3):127–137. doi: 10.1016/j.susc.2005.07.040

Lin F, Nordlund D, Weng TC, Zhu Y, Ban C, Richards RM, Xin HL (2014) Phase evolution for conversion reaction electrodes in lithium-ion batteries. Nat Commun 5. doi: 10.1038/ncomms4358

Ni S, Lv X, Ma J, Yang X, Zhang L (2014) A novel electrochemical reconstruction in nickel oxide nanowalls on Ni foam and the fine electrochemical performance as anode for lithium ion batteries. J Power Sources 270:564–568. doi: 10.1016/j.jpowsour.2014.07.137

Lin F, Markus IM, Nordlund D, Weng TC, Asta MD, Xin HL, Doeff MM (2014) Surface reconstruction and chemical evolution of stoichiometric layered cathode materials for lithium-ion batteries. Nat Commun 5. doi: 10.1038/ncomms4529

Yufit V, Shearing P, Hamilton R, Lee P, Wu M, Brandon N (2011) Investigation of lithium-ion polymer battery cell failure using X-ray computed tomography. Electrochem Commun 13(6):608–610

Ning G, Haran B, Popov BN (2003) Capacity fade study of lithium-ion batteries cycled at high discharge rates. J Power Sources 117(1):160–169

Dollé M, Sannier L, Beaudoin B, Trentin M, Tarascon JM (2002) Live scanning electron microscope observations of dendritic growth in lithium/polymer cells. Electrochem Solid-State Lett 5(12):A286–A289