A study of the capacity fade of porous NiO/Ni foam as negative electrode for lithium-ion batteries
Tóm tắt
Từ khóa
Tài liệu tham khảo
IEA World energy outlook (2013) (International Energy Agency 2013) International Energy Agency. http://www.worldenergyoutlook.org/media/weowebsite/2013/WEO2013_Ch06_Renewables.pdf . Accessed 28/01/2015 2015
Mohr S, Wang J, Ellem G, Ward J, Giurco D (2015) Projection of world fossil fuels by country. Fuel 141:120–135
Lee SH, Harding JR, Liu DS, D’Arcy JM, Shao-Horn Y, Hammond PT (2014) Li-anode protective layers for Li rechargeable batteries via layer-by-layer approaches. Chem Mater 26(8):2579–2585
Bruce PG, Freunberger SA, Hardwick LJ, Tarascon JM (2012) Li-O2 and Li-S batteries with high energy storage. Nat Mater 11(1):19–29
Dunn B, Kamath H, Tarascon JM (2011) Electrical energy storage for the grid: a battery of choices. Science 334(6058):928–935
Spinner N, Zhang L, Mustain WE (2014) Investigation of metal oxide anode degradation in lithium-ion batteries via identical-location TEM. J Mater Chem A 2(6):1627–1630
Kumar Rai A, Tuan Anh L, Park CJ, Kim J (2013) Electrochemical study of NiO nanoparticles electrode for application in rechargeable lithium-ion batteries. Ceram Int 39(6):6611–6618. doi: 10.1016/j.ceramint.2013.01.097
Wang C, Wang D, Wang Q, Chen H (2010) Fabrication and lithium storage performance of three-dimensional porous NiO as anode for lithium-ion battery. J Power Sources 195(21):7432–7437
Liang C, Gao M, Pan H, Liu Y, Yan M (2013) Lithium alloys and metal oxides as high-capacity anode materials for lithium-ion batteries. J Alloys Compd 575:246–256. doi: 10.1016/j.jallcom.2013.04.001
Cabana J, Monconduit L, Larcher D, Palacín MR (2010) Beyond intercalation-based Li-ion batteries: the state of the art and challenges of electrode materials reacting through conversion reactions. Adv Mater 22(35):E170–E192. doi: 10.1002/adma.201000717
Zhang WJ (2011) Lithium insertion/extraction mechanism in alloy anodes for lithium-ion batteries. J Power Sources 196(3):877–885. doi: 10.1016/j.jpowsour.2010.08.114
An K, Barai P, Smith K, Mukherjee PP (2014) Probing the thermal implications in mechanical degradation of lithium-ion battery electrodes. J Electrochem Soc 161(6):A1058–A1070
Arora P, White RE, Doyle M (1998) Capacity fade mechanisms and side reactions in lithium‐ion batteries. J Electrochem Soc 145(10):3647–3667
Wang C, Wu H, Chen Z, McDowell MT, Cui Y, Bao Z (2013) Self-healing chemistry enables the stable operation of silicon microparticle anodes for high-energy lithium-ion batteries. Nat Chem 5(12):1042–1048
Cai W, Wang H, Maleki H, Howard J, Lara-Curzio E (2011) Experimental simulation of internal short circuit in Li-ion and Li-ion-polymer cells. J Power Sources 196(18):7779–7783
Orendorff CJ, Roth EP, Nagasubramanian G (2011) Experimental triggers for internal short circuits in lithium-ion cells. J Power Sources 196(15):6554–6558. doi: 10.1016/j.jpowsour.2011.03.035
Aurbach D, Markovsky B, Rodkin A, Cojocaru M, Levi E, Kim H-J (2002) An analysis of rechargeable lithium-ion batteries after prolonged cycling. Electrochim Acta 47(12):1899–1911
Xiong M, Tang H, Wang Y, Pan M (2014) Ethylcellulose-coated polyolefin separators for lithium-ion batteries with improved safety performance. Carbohydr Polym 101:1140–1146
Mironova-Ulmane N, Kuzmin A, Steins I, Grabis J, Sildos I, Pärs M (2007) Raman scattering in nanosized nickel oxide NiO. J Phys Conf Ser 1:012039
Wood GC, Wright I, Ferguson J (1965) The oxidation of Ni and Co and of Ni/Co alloys at high temperatures. Corros Sci 5(9):645–661
Gulbransen EA, Andrew KF (1957) High temperature oxidation of high purity nickel between 750 and 1050 C. J Electrochem Soc 104(7):451–454
Baur J, Bartlett R, Ong J, Fassell W (1963) High‐pressure oxidation of metals, nickel in oxygen. J Electrochem Soc 110(3):185–189
Clarke DR (2002) Stress generation during high-temperature oxidation of metallic alloys. Curr Opinion Solid State Mater Sci 6(3):237–244
Venter A, Botha JR (2011) Optical and electrical properties of NiO for possible dielectric applications. S Afr J Sci 107(1–2):1–6
Liu C, Huntz AM, Lebrun JL (1993) Origin and development of residual stresses in the Ni/NiO system: in-situ studies at high temperature by x-ray diffraction. Mater Sci Eng A 160(1):113–126. doi: 10.1016/0921-5093(93)90504-8
Huntz A, Andrieux M, Molins R (2006) Relation between the oxidation mechanism of nickel, the microstructure and mechanical resistance of NiO films and the nickel purity II. Mechanical resistance of NiO films. Mater Sci Eng A 417(1):8–15
Fasaki I, Koutoulaki A, Kompitsas M, Charitidis C (2010) Structural, electrical and mechanical properties of NiO thin films grown by pulsed laser deposition. Appl Surf Sci 257(2):429–433. doi: 10.1016/j.apsusc.2010.07.006
Conde CF, Dominguez-Rodriguez A, Conde A, Marquez R (1976) Microhardness tests in nickel oxide single crystals. Phys Status Solidi A 33(1):K25–K29. doi: 10.1002/pssa.2210330154
Qi Y, Bruckel P, Lours P (2003) Interfacial toughness of the nickel–nickel oxide system. J Mater Sci Lett 22(5):371–374
Cabanas-Polo S, Bermejo R, Ferrari B, Sanchez-Herencia A (2012) Ni-NiO composites obtained by controlled oxidation of green compacts. Corros Sci 55:172–179
Yang W, Cheng G, Dong C, Bai Q, Chen X, Peng Z, Zhang Z (2014) NiO nanorod array anchored Ni foam as a binder-free anode for high-rate lithium ion batteries. J Mater Chem A 2(47):20022–20029
Huang P, Zhang X, Wei J, Pan J, Sheng Y, Feng B (2015) The fabrication of foam-like 3D mesoporous NiO-Ni as anode for high performance Li-ion batteries. Mater Res Bull 63:112–115
Ni S, Li T, Lv X, Yang X, Zhang L (2013) Designed constitution of NiO/Ni nanostructured electrode for high performance lithium ion battery. Electrochim Acta 91:267–274
Zhao W, Luo G, Wang CY (2015) Modeling nail penetration process in large-format Li-ion cells. J Electrochem Soc 162(1):A207–A217
Laruelle S, Grugeon S, Poizot P, Dolle M, Dupont L, Tarascon J (2002) On the origin of the extra electrochemical capacity displayed by MO/Li cells at low potential. J Electrochem Soc 149(5):A627–A634
Sun X, Si W, Liu X, Deng J, Xi L, Liu L, Yan C, Schmidt OG (2014) Multifunctional Ni/NiO hybrid nanomembranes as anode materials for high-rate Li-ion batteries. Nano Energy 9:168–175
Kundu M, Ng CCA, Petrovykh DY, Liu L (2013) Nickel foam supported mesoporous MnO2 nanosheet arrays with superior lithium storage performance. Chem Commun 49(76):8459–8461
Ni S, Zhang J, Lv X, Yang X, Zhang L (2015) Superior electrochemical performance of Li3VO4/NiO/Ni electrode via a coordinated electrochemical reconstruction. J Power Sources 291:95–101. doi: 10.1016/j.jpowsour.2015.05.015
Ni S, Ma J, Zhang J, Yang X, Zhang L (2015) Excellent electrochemical performance of NiV3O8/natural graphite anodes via novel in situ electrochemical reconstruction. Chem Commun 51(27):5880–5882. doi: 10.1039/c5cc00486a
Ni S, Lv X, Li T, Yang X, Zhang L, Ren Y (2013) A novel electrochemical activation effect induced morphology variation from massif-like CuxO to forest-like Cu2O nanostructure and the excellent electrochemical performance as anode for Li-ion battery. Electrochim Acta 96:253–260. doi: 10.1016/j.electacta.2013.02.106
Kolb D, Schneider J (1986) Surface reconstruction in electrochemistry: Au (100-(5 × 20), Au (111)-(1 × 23) and Au(110)-(1 × 2). Electrochim Acta 31(8):929–936
Schneider J, Kolb D (1988) Potential-induced surface reconstruction of Au (100). Surf Sci 193(3):579–592
Stickney JL, Villegas I, Ehlers CB (1989) In situ restoration of atomically well-ordered copper single-crystal electrode surfaces. J Am Chem Soc 111(16):6473–6474
Cali GJ, Berry GM, Bothwell ME, Soriaga MP (1991) Electrochemical regeneration of clean and well-ordered Pd (111) surfaces. J Electroanal Chem Interfacial Electrochem 297(2):523–528
Rahman MA, Wen C (2015) Nanogravel structured NiO/Ni foam as electrode for high performance lithium-ion batteries. IONICS. doi: 10.1007/s11581-015-1475-2
Fang W, Ramadass P, Zhang ZJ (2014) Study of internal short in a Li-ion cell—II. Numerical investigation using a 3D electrochemical-thermal model. J Power Sources 248:1090–1098
Orazem ME, Tribollet B (2011) Electrochemical impedance spectroscopy, 48. Wiley, Hoboken
Moss P, Au G, Plichta E, Zheng J (2008) An electrical circuit for modeling the dynamic response of Li-ion polymer batteries. J Electrochem Soc 155(12):A986–A994
Love CT, Baturina OA, Swider-Lyons KE (2015) Observation of lithium dendrites at ambient temperature and below. ECS Electrochem Lett 4(2):A24–A27
Tröltzsch U, Kanoun O, Tränkler H-R (2006) Characterizing aging effects of lithium ion batteries by impedance spectroscopy. Electrochim Acta 51(8):1664–1672
Winter M, Novák P, Monnier A (1998) Graphites for lithium‐ion cells: the correlation of the first‐cycle charge loss with the Brunauer‐Emmett‐Teller surface area. J Electrochem Soc 145(2):428–436
Wang C, Appleby AJ, Little FE (2001) Electrochemical impedance study of initial lithium ion intercalation into graphite powders. Electrochim Acta 46(12):1793–1813
Wang DW, Li F, Fang HT, Liu M, Lu GQ, Cheng HM (2006) Effect of pore packing defects in 2D ordered mesoporous carbons on ionic transport. J Phys Chem B 110(17):8570–8575. doi: 10.1021/jp0572683
Yuan D, Zeng J, Kristian N, Wang Y, Wang X (2009) Bi2O3 deposited on highly ordered mesoporous carbon for supercapacitors. Electrochem Commun 11(2):313–317. doi: 10.1016/j.elecom.2008.11.041
Rodrigues S, Munichandraiah N, Shukla A (1999) AC impedance and state-of-charge analysis of a sealed lithium-ion rechargeable battery. J Solid State Electrochem 3(7–8):397–405
Wang J, Gao G, Zhou X, Wu J, Yang H, Li Q, Wu G (2014) A facile method to prepare bi-phase lithium vanadate as cathode materials for Li-ion batteries. J Solid State Electrochem 18(9):2459–2467
Wang D, Yu Y, He H, Wang J, Zhou W, Abruña HD (2015) Template-free synthesis of hollow-structured Co3O4 nanoparticles as high-performance anodes for lithium-ion batteries. ACS Nano 9(2):1775–1781. doi: 10.1021/nn506624g
Sawai K, Ohzuku T (2003) Factors affecting rate capability of graphite electrodes for lithium-ion batteries. J Electrochem Soc 150(6):A674–A678
Dupont L, Laruelle S, Grugeon S, Dickinson C, Zhou W, Tarascon J-M (2008) Mesoporous Cr2O3 as negative electrode in lithium batteries: TEM study of the texture effect on the polymeric layer formation. J Power Sources 175(1):502–509
Kolb DM (1996) Reconstruction phenomena at metal-electrolyte interfaces. Prog Surf Sci 51(2):109–173. doi: 10.1016/0079-6816(96)00002-0
Giesen M, Beltramo G, Dieluweit S, Müller J, Ibach H, Schmickler W (2005) The thermodynamics of electrochemical annealing. Surf Sci 595(1–3):127–137. doi: 10.1016/j.susc.2005.07.040
Lin F, Nordlund D, Weng TC, Zhu Y, Ban C, Richards RM, Xin HL (2014) Phase evolution for conversion reaction electrodes in lithium-ion batteries. Nat Commun 5. doi: 10.1038/ncomms4358
Ni S, Lv X, Ma J, Yang X, Zhang L (2014) A novel electrochemical reconstruction in nickel oxide nanowalls on Ni foam and the fine electrochemical performance as anode for lithium ion batteries. J Power Sources 270:564–568. doi: 10.1016/j.jpowsour.2014.07.137
Lin F, Markus IM, Nordlund D, Weng TC, Asta MD, Xin HL, Doeff MM (2014) Surface reconstruction and chemical evolution of stoichiometric layered cathode materials for lithium-ion batteries. Nat Commun 5. doi: 10.1038/ncomms4529
Yufit V, Shearing P, Hamilton R, Lee P, Wu M, Brandon N (2011) Investigation of lithium-ion polymer battery cell failure using X-ray computed tomography. Electrochem Commun 13(6):608–610
Ning G, Haran B, Popov BN (2003) Capacity fade study of lithium-ion batteries cycled at high discharge rates. J Power Sources 117(1):160–169