A study of polarization compensation for quantum networks

EPJ Quantum Technology - Tập 10 - Trang 1-11 - 2023
Matej Peranić1, Marcus Clark2,3, Rui Wang4, Sima Bahrani4, Obada Alia4, Sören Wengerowsky5, Anton Radman1, Martin Lončarić1, Mario Stipčević1, John Rarity2, Reza Nejabati4, Siddarth Koduru Joshi2
1Photonics and Quantum Optics Research Unit, Center of Excellence for Advanced Materials and Sensing Devices, Ruđer Bošković Institute, Zagreb, Croatia
2Quantum Engineering Technology Labs, H. H. Wills Physics Laboratory & Department of Electrical and Electronic Engineering, University of Bristol, Bristol, United Kingdom
3Quantum Engineering Centre of Doctoral Training, NSQI, University of Bristol, Bristol, United Kingdom
4High Performance Networks Group, School of Computer Science, Electrical & Electronic Engineering and Engineering Maths (SCEEM), University of Bristol, Bristol, United Kingdom
5ICFO – Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Castelldefels (Barcelona), Spain

Tóm tắt

The information-theoretic unconditional security offered by quantum key distribution has spurred the development of larger quantum communication networks. However, as these networks grow so does the strong need to reduce complexity and overheads. Polarization-based entanglement distribution networks are a promising approach due to their scalability and no need for trusted nodes. Nevertheless, they are only viable if the birefringence of all-optical distribution fibres in the network is compensated to preserve the polarization-based quantum state. The brute force approach would require a few hundred fibre polarization controllers for even a moderately sized network. Instead, we propose and investigate four different realizations of polarization compensation schemes that can be used in quantum networks. We compare them based on the type of reference signals, complexity, effort, level of disruption to network operations and performance on a four-user quantum network.

Tài liệu tham khảo

Bennett CH, Brassard G. In: International conference on computer system and signal processing IEEE. 1984. p. 175–9. Ekert A. Quantum cryptography based on Bell’s theorem. Phys Rev Lett. 1991;67:661. https://doi.org/10.1103/PhysRevLett.67.661. Bennett CH, Brassard G, Mermin ND. Quantum cryptography without Bell’s theorem. Phys Rev Lett. 1992;68:557. https://doi.org/10.1103/PhysRevLett.68.557. Boaron A, Korzh B, Houlmann R, Boso G, Rusca G, Gray S et al.. Simple 2.5 GHz time-bin quantum key distribution. Appl Phys Lett. 2018;112:171108. https://doi.org/10.1063/1.5027030. Khan IA, Howell JC. Experimental demonstration of high two-photon time-energy entanglement. Phys Rev A. 2006;73:031801. https://doi.org/10.1103/PhysRevA.73.031801. Grosshans F, Van Assche G, Wenger J, Brouri R, Cerf NJ, Grangier P. Quantum key distribution using Gaussian-modulated coherent states. Nature. 2003;421:238–41. https://doi.org/10.1038/nature01289. Jennewein T, Simon C, Weihs G, Weinfurter H, Quantum ZA. Cryptography with entangled photons. Phys Rev Lett. 2000;84:4792. https://doi.org/10.1103/PhysRevLett.84.4729. Yin J, Li YH, Liao SK, Yang M, Cao Y, Zhang L et al.. Entanglement-based secure quantum cryptography over 1,120 kilometers. Nature. 2020;582:501–5. https://doi.org/10.1038/s41586-020-2401-y. Wengerowsky S, Joshi SK, Steinlechner F. An entanglement-based wavelength-multiplexed quantum communication network. Nature. 2018;564:225–8. https://doi.org/10.1038/s41586-018-0766-y. Noe R, Heidrich H, Hoffmann D. Endless polarization control systems for coherent optics. J Lightwave Technol. 1988;6(7):1199–208. https://doi.org/10.1109/50.4117. Chen J, Wu G, Li Y, Wu E, Zeng H. Active polarization stabilization in optical fibers suitable for quantum key distribution. Opt Express. 2007;15:17928–36. https://doi.org/10.1364/OE.15.017928. Xavier GB, De Faria GV, Temporão GP, Von derWeid JP. Full polarization control for fiber optical quantum communication systems using polarization encoding. Opt Express. 2008;16:1867–73. https://doi.org/10.1364/OE.16.001867. Chen J, Wu G, Li Y, Wu E, Zeng H. Active polarization stabilization in optical fibers suitable for quantum key distribution. Opt Express. 2007;15(26):17928–36. https://doi.org/10.1364/OE.15.017928. Chen J, Wu G, Xu L, Gu X, Wu E, Zeng H. Stable quantum key distribution with active polarization control based on time-division multiplexing. New J Phys. 2009;11:065004. https://doi.org/10.1088/1367-2630/11/6/065004. Joshi SK, Aktas D, Wengerowsky S, Lončarić M, Neumann SP, Liu B et al.. A trusted node-free eight user metropolitan quantum communication network. Sci Adv. 2020;6(36):8. https://doi.org/10.1126/sciadv.aba0959. Liu X, Xue R, Huang Y, Zhang W. Fully connected entanglement-based quantum communication network without trusted node. Optical Fiber Communication Conference (OFC). 2021. Qi Z, Li Y, Huang Y, Feng J, Zheng Y, Chen X. A 15-user quantum secure direct communication network. Light: Sci Appl. 2021;10:183. https://doi.org/10.1038/s41377-021-00634-2. Kim T, Fiorentino M, Wong FNC. Phase-stable source of polarization-entangled photons using a polarization Sagnac interferometer. Phys Rev A. 2006;73(1):012316. https://doi.org/10.1103/PhysRevA.73.012316. Lim HC, Yoshizawa A, Tsuchida H, Kikuchi K. Broadband source of telecom-band polarization-entangled photon-pairs for wavelength-multiplexed entanglement distribution. Opt Express. 2008;16:16052–7. https://doi.org/10.1364/OE.16.016052. Schneeloch J, Knarr SH, Bogorin DF, Levangie ML, Tison CC, Frank R et al.. Introduction to the absolute brightness and number statistics in spontaneous parametric down-conversion. J Opt. 2019;21(4):043501. https://doi.org/10.1088/2040-8986/ab05a8. Wang R, Joshi SK, Kanellos GT, Aktas D, Rarity J, Nejabati R, Simeonidou D. AI-Enabled Large-Scale Entanglement Distribution Quantum Networks. In: Dong P, Kani J, Xie C, Casellas R, Cole C, Li M, editors. Optical Fiber Communication Conference (OFC) 2021. San Francisco: OSA Technical Digest (Optica Publishing Group; 2021. p. 1–3, paper Tu1I.4. https://doi.org/10.1364/OFC.2021.Tu1I.4. Wang R, Alia O, Clark MJ, Bahrani S, Joshi SK, Aktas D et al.. A Dynamic Multi-Protocol Entanglement Distribution Quantum Network. In: Matsuo S, Plant D, Wey JS, Fludger C, Ryf R, Simeonidou D, editors. Optical Fiber Communication Conference (OFC) 2022. San Diego: Technical Digest Series (Optica Publishing Group; 2022. p. 1–3, paper Th3D.3. https://doi.org/10.1364/OFC.2022.Th3D.3. Clark MJ, Alia O, Wang R, Bahrani S, Peranić M, Aktas D et al.. Entanglement distribution quantum networking within deployed telecommunications fibre-optic infrastructure. In: Proc. SPIE 12335, quantum technology: driving commercialisation of an enabling science III, 123350E. 2023. https://doi.org/10.1117/12.2645095. Agnesi C, Avesani M, Stanco A, Villoresi P, Vallone G. All-fiber autocompensating polarization encoder for quantum key distribution. Opt Express. 2019;44(10):2398–401. https://doi.org/10.1364/OL.44.002398. Xiongfeng M, Fred FC-H, Hoi-Kwong L. Quantum key distribution with entangled photon sources. Phys Rev A. 2007;76(1):012307. https://doi.org/10.1103/PhysRevA.76.012307. Gobby C, Yuan ZL, Shields AJ. Quantum key distribution over 122 km of standard telecom fiber. Appl Phys Lett. 2004;84:3762. https://doi.org/10.1063/1.1738173. Shi Y, Poh HS, Ling A, Kurtseifer C. Fibre polarization state compensation in entanglement-based quantum key distribution. Opt Express. 2021;29:37075–80. https://doi.org/10.1364/OE.437896. Ding YY, Chen W, Chen H, Wang C, Li Y-P, Wang S et al.. Polarization-basis tracking scheme for quantum key distribution using revealed sifted key bits. Opt Lett. 2017;42:1023–6. https://doi.org/10.1364/OL.42.001023. Neumann SP, Buchner A, Bulla L, Bohmann M, Ursin R. Continuous entanglement distribution over a transnational 248 km fiber link. Nat Commun. 2022;13:6134. https://doi.org/10.1038/s41467-022-33919-0. Ramos MF, Silva NA, Muga NJ, Pinto AN. Full polarization random drift compensation method for quantum communication. Opt Express. 2022;30:6907–20. https://doi.org/10.1364/OE445228.