Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Nghiên cứu phân tích khám phá và ổn định của thuật toán điện trường nhân tạo
Tóm tắt
Sự hội tụ lý thuyết, phân tích khám phá và ổn định của bất kỳ thuật toán heuristic nào là một khía cạnh quan trọng để làm cho nó trở nên hiệu quả và đáng tin cậy hơn đối với cộng đồng nghiên cứu. Thuật toán điện trường nhân tạo (AEFA) (Yadav et al., Swarm Evol Comput 48:93–108, 54) là một thuật toán tối ưu hóa mới trong lớp các thuật toán tối ưu hóa heuristic. Nó được lấy cảm hứng từ định luật Coulomb về lực tĩnh điện. Trong bài báo này, một nghiên cứu về hội tụ và phân tích ổn định của quỹ đạo hạt của thuật toán AEFA được thiết lập. Một nghiên cứu lý thuyết về ổn định bậc nhất và bậc hai của thuật toán AEFA được thiết lập và được mô tả bởi một quan hệ hồi tiếp ngẫu nhiên. Sự hội tụ của kỳ vọng và phương sai của vị trí các hạt được chứng minh và thảo luận chi tiết. Hơn nữa, các điều kiện biên cho sự hội tụ của kỳ vọng và phương sai của vị trí các hạt được thiết lập cùng với ổn định bậc nhất và bậc hai của chúng. Những điều kiện biên này gợi ý các giá trị tham số tốt hơn cho thuật toán AEFA. Các ranh giới hệ số cho vị trí các hạt liên quan đến các loại hành vi dao động khác nhau, chẳng hạn như dao động đơn, dao động điều hòa và dao động zigzag, được thảo luận trong cả miền thời gian và miền tần số. Ngoài ra, các phát hiện lý thuyết được xác thực bằng cách giải quyết 23 bài toán tối ưu hóa tham khảo và một số bài toán tối ưu hóa trong thực tế.
Từ khóa
Tài liệu tham khảo
Abraham A, Konar A, Samal NR, Das S (2007) Stability analysis of the ant system dynamics with non-uniform pheromone deposition rules. In: 2007 IEEE congress on evolutionary computation. IEEE, pp 1103–1108
Abualigah L, Diabat A, Mirjalili S, Abd Elaziz M, Gandomi AH (2021) The arithmetic optimization algorithm. Comput Methods Appl Mech Eng 376:113609
Askari Q, Saeed M, Younas I (2020) Heap-based optimizer inspired by corporate rank hierarchy for global optimization. Expert Syst Appl 161:113702
Bansal JC, Gopal A, Nagar AK (2018) Stability analysis of artificial bee colony optimization algorithm. Swarm Evol Comput 41:9–19
Biswas A, Das S, Abraham A, Dasgupta S (2010) Stability analysis of the reproduction operator in bacterial foraging optimization. Theor Comput Sci 411(21):2127–2139
Bonyadi MR, Michalewicz Z (2014) A locally convergent rotationally invariant particle swarm optimization algorithm. Swarm Intell 8(3):159–198
Bonyadi MR, Michalewicz Z (2015a) Analysis of stability, local convergence, and transformation sensitivity of a variant of the particle swarm optimization algorithm. IEEE Trans Evol Comput 20(3):370–385
Bonyadi MR, Michalewicz Z (2015b) Stability analysis of the particle swarm optimization without stagnation assumption. IEEE Trans Evol Comput 20(5):814–819
Canayaz M, Karcı A (2015) Investigation of cricket behaviours as evolutionary computation for system design optimization problems. Measurement 68:225–235
Chen T, Chen H (2009) Mixed–discrete structural optimization using a rank-niche evolution strategy. Eng Optim 41(1):39–58
Cleghorn CW, Engelbrecht AP (2014) A generalized theoretical deterministic particle swarm model. Swarm Intell 8(1):35–59
Dasgupta S, Das S, Biswas A, Abraham A (2009) On stability and convergence of the population-dynamics in differential evolution. Ai Commun 22(1):1–20
Deb K, Srinivasan A (2006) Innovization: Innovating design principles through optimization. In: Proceedings of the 8th annual conference on Genetic and evolutionary computation. ACM, pp 1629–1636
Dhiman G, Kumar V (2019) Seagull optimization algorithm: Theory and its applications for large-scale industrial engineering problems. Knowl-Based Syst 165:169–196
Dorigo M, Birattari M (2010) Ant colony optimization. Springer, Berlin
Eskandar H, Sadollah A, Bahreininejad A, Hamdi M (2012) Water cycle algorithm–a novel metaheuristic optimization method for solving constrained engineering optimization problems. Comput Struct 110:151–166
Gandomi AH, Yang X-S, Alavi AH (2011) Mixed variable structural optimization using firefly algorithm. Comput Struct 89(23-24):2325–2336
Geem ZW, Kim JH, Loganathan GV (2001) A new heuristic optimization algorithm: harmony search. Simulation 76(2):60–68
Ghorbani F, Nezamabadi PH (2012) On the convergence analysis of gravitational search algorithm
Gopal A, Bansal JC (2016) Stability analysis of differential evolution. In: 2016 international workshop on computational intelligence (IWCI). IEEE, pp 221–223
Guedria NB (2016) Improved accelerated pso algorithm for mechanical engineering optimization problems. Appl Soft Comput 40:455–467
Jiang S, Wang Y, Ji Z (2014) Convergence analysis and performance of an improved gravitational search algorithm. Appl Soft Comput 24:363–384
Kamboj VK, Nandi A, Bhadoria A, Sehgal S (2020) An intensify harris hawks optimizer for numerical and engineering optimization problems. Appl Soft Comput 89:106018
Karaboga D (2005) An idea based on honey bee swarm for numerical optimization. Technical report, Technical report-tr06, Erciyes university, engineering faculty, computer Ě
Kaveh A, Dadras A (2017) A novel meta-heuristic optimization algorithm: thermal exchange optimization. Adv Eng Softw 110:69–84
Kaveh A, Eslamlou AD (2020) Water strider algorithm: A new metaheuristic and applications. In: Structures, vol 25. Elsevier, pp 520–541
Kennedy J (2010) Particle swarm optimization. In: Encyclopedia of machine learning, pp 760–766
Liu Q (2015) Order-2 stability analysis of particle swarm optimization. Evoluti Comput 23 (2):187–216
Meng OK, Pauline O, Kiong SC (2020) A carnivorous plant algorithm for solving global optimization problems. Appl Soft Comput :106833
Meng X. -B., Gao XZ, Liu Y, Zhang H (2015) A novel bat algorithm with habitat selection and doppler effect in echoes for optimization. Expert Syst Appl 42(17-18):6350–6364
Mirjalili S (2015) Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm. Knowledge-based Syst 89:228–249
Mirjalili S (2016a) Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems. Neural Comput Appl 27(4):1053–1073
Mirjalili S (2016b) Sca: a sine cosine algorithm for solving optimization problems. Knowl-based Syst 96:120–133
Mirjalili S, Gandomi AH, Mirjalili S, Saremi S, Faris H, Mirjalili S (2017) Salp swarm algorithm: A bio-inspired optimizer for engineering design problems. Adv Eng Softw 114:163–191
Mirjalili S, Lewis A (2016) The whale optimization algorithm. Adv Eng Softw 95:51–67
Mirjalili S, Mirjalili S, Hatamlou A (2016) Multi-verse optimizer: a nature-inspired algorithm for global optimization. Neural Comput Appl 27(2):495–513
Mirjalili S, Mirjalili S, Lewis A (2014) Grey wolf optimizer. Adv Eng Softw 69:46–61
Osyczka A (2002) Evolutionary algorithms for single and multicriteria design optimization
Passino KM (2010) Bacterial foraging optimization. Int J Swarm Intell Res (IJSIR) 1(1):1–16
Połap D, Woźniak M (2021) Red fox optimization algorithm. Expert Syst Appl 166:114107
Poli R (2009) Mean and variance of the sampling distribution of particle swarm optimizers during stagnation. IEEE Trans Evol Comput 13(4):712–721
Rao RV, Savsani VJ, Vakharia D (2011) Teaching–learning-based optimization: a novel method for constrained mechanical design optimization problems. Comput Aided Des 43(3):303–315
Rashedi E, Nezamabadi-Pour H, Saryazdi S (2009) Gsa: a gravitational search algorithm. Inf Sci 179(13):2232–2248
Reed M (2012) Methods of modern mathematical physics: Functional analysis. Elsevier, Amsterdam
Storn R, Price K (1997) Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces. J Global Optim 11(4):341–359
Thanedar P, Vanderplaats G (1995) Survey of discrete variable optimization for structural design. J Struct Eng 121(2):301–306
Van den Bergh F, Engelbrecht AP (2006) A study of particle swarm optimization particle trajectories. Inf Sci 176(8):937– 971
Van den Bergh F, Engelbrecht AP (2010) A convergence proof for the particle swarm optimiser. Fundamenta Informaticae 105(4):341–374
Wang Z, Luo Q, Zhou Y (2020), Hybrid metaheuristic algorithm using butterfly and flower pollination base on mutualism mechanism for global optimization problems. Eng Comput
Wilke DN, Kok S, Groenwold AA (2007) Comparison of linear and classical velocity update rules in particle swarm optimization: notes on diversity. Int J Numer Methods Eng 70(8):962–984
Wu G, Mallipeddi R, Suganthan PN (2017) Problem definitions and evaluation criteria for the cec 2017 competition on constrained real-parameter optimization. National University of Defense Technology, Changsha, Hunan, PR China and Kyungpook National University, Daegu South Korea and Nanyang Technological University, Singapore, Technical Report
Yadav A, Deep K (2013) Shrinking hypersphere based trajectory of particles in pso. Appl Math Comput 220:246–267
Yadav A, Deep K, Kim JH, Nagar AK (2016) Gravitational swarm optimizer for global optimization. Swarm Evol Comput 31:64–89
Yadav A et al (2019) Aefa: Artificial electric field algorithm for global optimization. Swarm Evol Comput 48:93–108
Yadav A et al (2020a) Discrete artificial electric field algorithm for high-order graph matching. Appl Soft Comput :106260
Yadav A, Kumar N et al (2020b) Artificial electric field algorithm for engineering optimization problems. Expert Syst Appl 149:113308
Yadav A, Kumar N, Kim et al (2020c) Development of discrete artificial electric field algorithm for quadratic assignment problems. In: International conference on harmony search algorithm. Springer, pp 411–421
Yalcin Y, Pekcan O (2783) Nuclear fission nuclear fusion algorithm for global optimization a modified big bang big crunch algorithm. Neural Comput and Applic 32(7):2751
Yang X-S, Hossein Gandomi A (2012) Bat algorithm: a novel approach for global engineering optimization. Eng Comput 29(5):464–483
Yao X, Liu Y, Lin G (1999) Evolutionary programming made faster. IEEE Trans Evol Comput 3(2):82–102
Yu C, Heidari AA, Chen H (2020) A quantum-behaved simulated annealing enhanced moth-flame optimization method. Appl Math Model
Zhang Z, Ding S, Jia W (2019) A hybrid optimization algorithm based on cuckoo search and differential evolution for solving constrained engineering problems. Eng Appl Artif Intel 85:254–268