Một nghiên cứu sàng lọc ảo dựa trên cấu trúc với tốc độ cao, kết nối phân tử, động lực học phân tử và MM/PBSA đã xác định được các chất ức chế kép giống thuốc mới có khả năng tác động lên protease cysteine cruzain và rhodesain của trypanosome

Molecular Diversity - Trang 1-21 - 2023
Chatchakorn Eurtivong1,2,3, Collin Zimmer4, Tanja Schirmeister4, Chutikarn Butkinaree5, Rungroj Saruengkhanphasit2,3, Worawat Niwetmarin2,3, Somsak Ruchirawat2,3,6, Avninder S. Bhambra7
1Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Mahidol Univeristy, Bangkok, Thailand
2Program in Chemical Sciences, Chulabhorn Graduate Institute, Chulabhorn Royal Academy, Bangkok, Thailand
3Center of Excellence On Environmental Health and Toxicology (EHT), OPS, Ministry of Higher Education, Science, Research and Innovation, Bangkok, Thailand
4Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University, Mainz, Germany
5National Omics Center, National Science and Technology Development Agency, Khlong Luang, Thailand
6Laboratory of Medicinal Chemistry, Chulabhorn Research Institute, Bangkok, Thailand
7Leicester School of Allied Health Sciences, Faculty of Health and Life Sciences, De Montfort University, Leicester, UK

Tóm tắt

Việc sàng lọc ảo một bộ sưu tập gồm ~ 25.000 phân tử ChemBridge đã xác định hai phân tử dị vòng nitrogen, 12 và 15, với các đặc tính ức chế kép tiềm năng đối với protease cysteine cruzain và rhodesain của trypanosome. Tìm kiếm độ tương đồng trong DrugBank đã phát hiện hai hợp chất ảo với cấu trúc hóa học mới lạ và hoạt tính chống trypanosome chưa được ghi nhận. Các nghiên cứu về cơ chế gắn kết thông qua mô phỏng động lực học phân tử trong 100 ns cho thấy các phân tử có thể chiếm lĩnh các vị trí gắn và ổn định các phức hợp protease. Các độ bám dính được tính toán bằng phương pháp MM/PBSA cho 20 ns cuối cùng cho thấy các phát hiện ảo có độ bám dính tương đương với các chất ức chế đã biết trong tài liệu, cho thấy cả hai phân tử đều là những nền tảng hứa hẹn với đặc tính ức chế kép đối với cruzain và rhodesain, cụ thể là 12 có giá trị ΔGbind ước tính là − 38.1 và − 38.2 kcal/mol đối với cruzain và rhodesain, tương ứng, trong khi 15 có giá trị ΔGbind ước tính là − 34.4 và − 25.8 kcal/mol đối với rhodesain. Các nghiên cứu phân rã năng lượng tự do gắn kết theo từng phần dư và kiểm tra trực quan tại các điểm ảnh 100 ns đã tiết lộ sự hình thành liên kết hydro và các lực hút không phân cực với các amino acid quan trọng góp phần vào giá trị ΔGbind. Các tương tác này tương tự như những gì đã được báo cáo trước đây trong tài liệu. Dự đoán tổng thể về ADMET đối với hai phân tử này là có lợi cho phát triển thuốc với các hồ sơ dược động học chấp nhận được và khả năng sinh khả dụng đường uống đầy đủ.

Từ khóa


Tài liệu tham khảo

Baker CH, Welburn SC (2018) The long wait for a new drug for human African Trypanosomiasis. Trends Parasitol 34:818–27. https://doi.org/10.1016/j.pt.2018.08.006 World Health Organization (2021) Trypanosomiasis, human African (sleeping sickness). https://www.who.int/news-room/fact-sheets/detail/trypanosomiasis-human-african-(sleeping-sickness). Accessed 15 December 2021 De Koning PH (2020) the drugs of sleeping sickness: their mechanisms of action and resistance, and a brief history. Trop Med Infect Dis 5(1):14. https://doi.org/10.3390/tropicalmed5010014 Sajid M, McKerrow JH (2002) Cysteine proteases of parasitic organisms. Mol Biochem Parasitol 120:1–21. https://doi.org/10.1016/S0166-6851(01)00438-8 Ferreira LG, Andricopulo AD (2017) Targeting cysteine proteases in trypanosomatid disease drug discovery. Pharmacol Ther 180:49–61. https://doi.org/10.1016/j.pharmthera.2017.06.004 Di Chio C, Previti S et al (2020) Development of novel benzodiazepine-based peptidomimetics as inhibitors of rhodesain from trypanosoma brucei rhodesiense. ChemMedChem 15:995–1001. https://doi.org/10.1002/cmdc.202000158 Engel JC, Doyle PS, Hsieh I, McKerrow JH (1998) Cysteine protease inhibitors cure an experimental Trypanosoma cruzi infection. J Exp Med 188:725–734. https://doi.org/10.1084/jem.188.4.725 Fujii N, Mallari JP, Hansell EJ et al (2005) Discovery of potent thiosemicarbazone inhibitors of rhodesain and cruzain. Bioorg Med Chem Lett 15:121–123. https://doi.org/10.1016/j.bmcl.2004.10.023 Ehmke V, Winkler E et al (2013) Optimization of triazine nitriles as rhodesain inhibitors: structure-activity relationships, bioisosteric imidazopyridine nitriles, and X-ray crystal structure analysis with human cathepsin L. ChemMedChem 8:967–975. https://doi.org/10.1002/cmdc.201300112 Neitz RJ, Bryant C et al (2015) Tetrafluorophenoxymethyl ketone cruzain inhibitors with improved pharmacokinetic properties as therapeutic leads for Chagas’ disease. Bioorg Med Chem Lett 25:4834–4837. https://doi.org/10.1016/j.bmcl.2015.06.066 Makhoba XH, Viegas C Jr, Mosa RA, Viegas FPD, Pooe OJ (2020) potential impact of the multi-target drug approach in the treatment of some complex diseases. Drug Des Devel Ther 14:3235–3249. https://doi.org/10.2147/DDDT.S257494 Khare S, Nagle AS et al (2016) Proteasome inhibition for treatment of leishmaniasis, Chagas disease and sleeping sickness. Nature 537:229–233. https://doi.org/10.1038/nature19339 Lionta E, Spyrou G, Vassilatis DK, Cournia Z (2014) Structure-based virtual screening for drug discovery: principles, applications and recent advances. Curr Top Med Chem 14:1923–1938. https://doi.org/10.2174/1568026614666140929124445 Homeyer N, Gohlke H (2012) Free energy calculations by the molecular mechanics poisson−boltzmann surface area method. Mol Inform 31:114–122. https://doi.org/10.1002/minf.201100135 Allinger NL (1977) Conformational analysis. 130. MM2. A hydrocarbon force field utilizing V1 and V2 torsional terms. J Am Chem Soc 99:8127–8134. https://doi.org/10.1021/ja00467a001 McGrath ME, Eakin AE, Engel JC, McKerrow JH, Craik CS, Fletterick RJ (1995) The crystal structure of cruzain: a therapeutic target for Chagas’ disease. J Mol Biol 247:251–259. https://doi.org/10.1006/jmbi.1994.0137 Berman HM, Westbrook J et al (2000) The protein data bank. Nucleic Acids Res 28:235–242. https://doi.org/10.1093/nar/28.1.235 Mooij WT, Verdonk ML (2005) General and targeted statistical potentials for protein-ligand interactions. Proteins 61:272–287. https://doi.org/10.1002/prot.20588 Jones G, Willett P, Glen RC, Leach AR, Taylor R (1997) Development and validation of a genetic algorithm for flexible docking. J Mol Biol 267:727–748. https://doi.org/10.1006/jmbi.1996.0897 Abraham MJ, van der Spoel D, Lindahl E, Hess B, Gromacs development team team (2016) GROMACS User Manual version 5.1.4 Berendsen HJC, van der Spoel D, van Drunen R (1995) GROMACS: a message-passing parallel molecular dynamics implementation. Comput Phys Commun 91:43–56. https://doi.org/10.1016/0010-4655(95)00042-E Malde AK, Zuo L et al (2011) An automated force field topology builder (ATB) and repository: version 1.0. J Chem Theory Comput 7:4026–4037. https://doi.org/10.1021/ct200196m Stroet M, Caron B, Visscher KM, Geerke DP, Malde AK, Mark AE (2018) Automated topology builder version 3.0: prediction of solvation free enthalpies in water and hexane. J Chem Theory Comput 14:5834–5845. https://doi.org/10.1021/acs.jctc.8b00768 Schmid N, Eichenberger AP et al (2011) Definition and testing of the GROMOS force-field versions 54A7 and 54B7. Eur Biophys J 40:843–856. https://doi.org/10.1007/s00249-011-0700-9 Berweger CD, van Gunsteren WF, Müller-Plathe F (1995) Force field parametrization by weak coupling. Re-engineering SPC water Chem Phys Lett 232:429–436. https://doi.org/10.1016/0009-2614(94)01391-8 Berendsen HJC, Postma JPM, van Gunsteren WF, DiNola A, Haak JR (1984) Molecular dynamics with coupling to an external bath. J Chem Phys 81:3684–3690. https://doi.org/10.1063/1.448118 Parrinello M, Rahman A (1981) Polymorphic transitions in single crystals: a new molecular dynamics method. J Appl Phys 52:7182–7190. https://doi.org/10.1063/1.328693 Hess B, Bekker H, Berendsen HJC, Fraaije JGEM (1997) LINCS: a linear constraint solver for molecular simulations. J Comput Chem 18:1463–1472. https://doi.org/10.1002/(SICI)1096-987X(199709)18:12%3c1463::AID-JCC4%3e3.0.CO;2-H Darden T, York D, Pedersen L (1993) Particle mesh Ewald: an Nṡlog(N) method for Ewald sums in large systems. J Chem Phys 98:10089. https://doi.org/10.1063/1.464397 Kumari R, Kumar R, Lynn A (2014) g_mmpbsa—A GROMACS tool for high-throughput MM-PBSA calculations. J Chem Info Model 54:1951–1962. https://doi.org/10.1021/ci500020m Daina A, Michielin O, Zoete V (2017) SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep 7:42717. https://doi.org/10.1038/srep42717 Giraldo C, Gómez S et al (2016) Insight into the mechanism of the Michael reaction. ChemPhysChem 17:2022–2034. https://doi.org/10.1002/cphc.201600166 Wishart DS, Knox C et al (2008) DrugBank: a knowledgebase for drugs, drug actions and drug targets. Nucleic Acids Res 36:D901–D906. https://doi.org/10.1093/nar/gkm958 Lang DK, Kaur R, Arora R, Saini B, Arora S (2020) Nitrogen-containing heterocycles as anticancer agents: an overview. Anticancer Agents Med Chem 20:2150–2168. https://doi.org/10.2174/1871520620666200705214917 Lipinski CA, Lombardo F, Dominy BW, Feeney PJ (1997) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 23:3–25. https://doi.org/10.1016/S0169-409X(96)00423-1 Veber DF, Johnson SR, Cheng HY, Smith BR, Ward KW, Kopple KD (2002) Molecular properties that influence the oral bioavailability of drug candidates. J Med Chem 45:2615–2623. https://doi.org/10.1021/jm020017n Martin YC (2005) A bioavailability score. J Med Chem 48:3164–3170. https://doi.org/10.1021/jm0492002 Ditzinger F, Price DJ et al (2019) Lipophilicity and hydrophobicity considerations in bioenabling oral formulations approaches—a PEARRL review. J Pharm Pharmacol 71:464–482. https://doi.org/10.1111/jphp.12984 Ertl P, Schuffenhauer A (2009) Estimation of synthetic accessibility score of drug-like molecules based on molecular complexity and fragment contributions. J Cheminformatics 1:8. https://doi.org/10.1186/1758-2946-1-8 Ferreira RS, Simeonov A et al (2010) Complementarity between a docking and a high- throughput screen in discovering new cruzain inhibitors. J Med Chem 53:4891–4905. https://doi.org/10.1021/jm100488w Silva LR, Guimarães AS et al (2021) Computer-aided design of 1,4-naphthoquinone-based inhibitors targeting cruzain and rhodesain cysteine proteases. Bioorg Med Chem 41:116213. https://doi.org/10.1016/j.bmc.2021.116213 Ogungbe IV, Setzer WN (2009) Comparative molecular docking of antitrypanosomal natural products into multiple Trypanosoma brucei drug targets. Molecules 14(4):1513–1536. https://doi.org/10.3390/molecules14041513 de Souza ML, de Oliveira Rezende C et al (2020) Discovery of potent, reversible, and competitive cruzain inhibitors with trypanocidal activity: a structure-based drug design approach. J Chem Inf Model 60:1028–1041. https://doi.org/10.1021/acs.jcim.9b00802 Wiggers HJ, Rocha JR et al (2013) Non-peptidic cruzain inhibitors with trypanocidal activity discovered by virtual screening and in vitro assay. PLoS Negl Trop Dis 7:e2370. https://doi.org/10.1371/journal.pntd.0002370 Ferreira RAA, Pauli I et al (2019) Structure-based and molecular modeling studies for the discovery of cyclic imides as reversible cruzain inhibitors with potent anti-trypanosoma cruzi activity. Front Chem 7:798. https://doi.org/10.3389/fchem.2019.00798 Rogers KE, Keränen H et al (2012) Novel cruzain inhibitors for the treatment of Chagas’ disease. Chem Biol Drug Des 80:398–405. https://doi.org/10.1111/j.1747-0285.2012.01416.x