A structural comparison of bacterial microfossils vs. 'nanobacteria' and nanofossils

Earth-Science Reviews - Tập 48 - Trang 251-264 - 1999
G Southam1, R Donald1
1Department of Biological Sciences, College of Arts and Sciences, Northern Arizona University, P.O. Box 5640, Flagstaff, AZ 86011-5640, USA

Tài liệu tham khảo

Adams, 1987, Characterization of extracellular Mn2+-oxidizing activity and isolation of a Mn2+-oxidizing protein from Leptothrix discophora SS-1, J. Bacteriol., 169, 1279, 10.1128/jb.169.3.1279-1285.1987 Bae, 1972, Microflora of soil as viewed by transmission electron microscopy, Appl. Microbiol., 23, 637, 10.1128/AEM.23.3.637-648.1972 Barghoorn, 1965, Microorganisms from the Gunflint Chert, Science, 147, 563, 10.1126/science.147.3658.563 Bazylinski, 1988, Anaerobic magnetite production by a marine, magnetotactic bacterium, Nature, 334, 518, 10.1038/334518a0 Beveridge, 1981, Ultrastructure, chemistry, and function of the bacterial wall, Int. Rev. Cytol., 72, 229, 10.1016/S0074-7696(08)61198-5 Beveridge, 1988, The bacterial surface: general considerations towards design and function, Can. J. Microbiol., 34, 363, 10.1139/m88-067 Beveridge, 1985, Metal fixation by bacterial cell walls, Can. J. Earth Sci., 22, 1893, 10.1139/e85-204 Beveridge, 1976, Reassembly in vitro of the superficial wall components of Spirillum putridiconchylium, J. Ultrastruct. Res., 55, 105, 10.1016/S0022-5320(76)80086-X Beveridge, 1979, Uptake and retention of metals by cell walls of Bacillus subtilis, J. Bacteriol., 127, 1502, 10.1128/JB.127.3.1502-1518.1976 Beveridge, 1980, Sites of metal deposition in the cell wall of Bacillus subtilis, J. Bacteriol., 141, 876, 10.1128/JB.141.2.876-887.1980 Beveridge, 1982, Major sites of metal binding in Bacillus licheniformis walls, J. Bacteriol., 150, 1438, 10.1128/JB.150.3.1438-1448.1982 Beveridge, 1983, Diagenesis of metals chemically complexed to bacteria: laboratory formation of metal phosphates, sulfides, and organic condensates in artificial sediments, Appl. Environ. Microbiol., 45, 1094, 10.1128/AEM.45.3.1094-1108.1983 Birnbaum, 1985, Sulfate-reducing bacteria and silica solubility: a possible mechanism for evaporite diagenesis and silica precipitation in banded iron formations, Can. J. Earth Sci., 22, 1904, 10.1139/e85-206 Boogerd, 1987, Manganese oxidation by Leptothrix discophera, J. Bacteriol., 169, 489, 10.1128/jb.169.2.489-494.1987 Bradley, 1997, No `nanofossils' in Martian meteorite, Nature, 390, 454, 10.1038/37257 Bubela, 1969, Formation of banded sulphides: metal ion separation and precipitation by inorganic and microbial sulphide sources, Nature, 221, 465, 10.1038/221465a0 Chauhan, 1979, Phosphate-bearing stromatolites of the Precambrian Aravalli phosphate deposits of the Udaipur region, their environmental significance and genesis of phosphorite, Precambrian Res., 8, 95, 10.1016/0301-9268(79)90040-8 Cloud, 1973, Paleoecological significance of the banded iron-formation, Econ. Geol., 68, 1135, 10.2113/gsecongeo.68.7.1135 Cloud, 1968, Microbiotas of the banded iron formations, PNAS USA, 61, 779, 10.1073/pnas.61.3.779 Corstjens, 1992, Enzymatic iron oxidation by Leptothrix discophora: identification of an iron-oxidizing protein, Appl. Environ. Microbiol., 58, 450, 10.1128/AEM.58.2.450-454.1992 Cusack, 1992, Enhanced oil recovery — three-dimensional sandpack simulation of ultramicrobacteria resuscitation in reservoir formation, J. Gen. Microbiol., 138, 647, 10.1099/00221287-138-3-647 Degens, 1982, In situ metal-staining of biological membranes in sediments, Nature, 298, 262, 10.1038/298262a0 Degens, 1970, Fossil membranes and cell wall fragments from a 7000-year-old Black Sea sediment, Science, 168, 1207, 10.1126/science.168.3936.1207 Donald, 1999, Low temperature anaerobic bacterial diagenesis of ferrous monosulfide to pyrite, Geochim. Cosmochim. Acta, 63, 2019, 10.1016/S0016-7037(99)00140-4 Ehrlich, 1975, The formation of ores in the sedimentary environment of the deep sea with microbial participation: the case for ferromanganese concretions, Science, 119, 36 Ferris, 1984, Binding of a paramagnetic metal cation to Escherichia coli K-12 outer membrane vesicles, FEMS Microbiol. Lett., 24, 43, 10.1111/j.1574-6968.1984.tb01241.x Ferris, 1986, Physicochemical roles of soluble metal cations in the outer membrane of Escherichia coli K-12, Can. J. Microbiol., 32, 594, 10.1139/m86-110 Ferris, 1986, Iron-silica crystallite nucleation by bacteria in a geothermal sediment, Nature, 320, 609, 10.1038/320609a0 Ferris, 1987, Bacteria as nucleation sites for authigenic minerals in a metal-contaminated lake sediment, Chem. Geol., 63, 225, 10.1016/0009-2541(87)90165-3 Ferris, 1988, Metallic ion activity by Bacillus subtilis: implications for the fossilization of microorganisms, Geology, 16, 149, 10.1130/0091-7613(1988)016<0149:MIBBBS>2.3.CO;2 Ferris, 1989, Effect of mineral substrate hardness on the population density of epilithic microorganism in two Ontario rivers, Can. J. Microbiol., 35, 744, 10.1139/m89-122 Ferris, 1989, Metal interaction with microbial biofilms in acidic and neutral pH environments, Appl. Environ. Microbiol., 55, 1249, 10.1128/AEM.55.5.1249-1257.1989 Ferris, 1989, Iron-oxides in acid mine drainage environments and their association with bacteria, Chem. Geol., 74, 321, 10.1016/0009-2541(89)90041-7 Flemming, 1990, Remobilization of toxic heavy metals adsorbed to bacterial wall-clay composites, Appl. Environ. Microbiol., 56, 3191, 10.1128/AEM.56.10.3191-3203.1990 Folk, 1993, SEM imaging of bacteria and nannobacteria in carbonate sediments and rocks, J. Sediment. Petrol., 63, 990 Folk, 1997, The possible role of nannobacteria (dwarf bacteria) in clay mineral diagenesis and the importance of careful sample preparation in high magnification SEM study, J. Sediment. Res., 67, 597 Förstner, 1982, Accumulative phases for heavy metals in limnic sediments, Hydrobiology, 91, 269, 10.1007/BF02391944 Fortin, 1994, An examination of iron sulfide, iron-nickel sulfide and nickel sulfide precipitation by a Desulfotomaculum species: and its nickel resistance mechanisms, FEMS Microbiol. Ecol., 14, 121, 10.1111/j.1574-6941.1994.tb00099.x Geesey, 1992, Two-phase model for describing the interactions between copper ions and exopolymers from Alteromonas atlantica, Can. J. Microbiol., 38, 785, 10.1139/m92-128 Glenn, 1985, Purification and characterization of an extracellular Mn(II) — dependent peroxidase from the lignin degrading basidiomycete Phanerochaete chysosporium, Arch. Biochem. Biophys., 242, 329, 10.1016/0003-9861(85)90217-6 Gorby, 1992, Enzymatic uranium precipitation, Environ. Sci. Technol., 26, 205, 10.1021/es00025a026 Graham, 1990, Evaluation of freeze-substitution and conventional embedding protocols for routine electron microscopic processing of eubacteria, J. Bacteriol., 172, 2141, 10.1128/jb.172.4.2141-2149.1990 Henrot, 1990, Processes of iron and manganese retention in laboratory peat microcosms subjected to acid mine drainage, J. Environ. Qual., 19, 312, 10.2134/jeq1990.00472425001900020018x Himmelreich, 1996, Complete sequence analysis of the genome of the bacterium Mycoplasma pneumoniae, Nucleic Acids Res., 24, 4420, 10.1093/nar/24.22.4420 Hinman, 1996, Seasonal changes in silica deposition in hot spring systems, Chem. Geol., 132, 237, 10.1016/S0009-2541(96)00060-5 Hoyle, 1983, Binding of metallic ions to the outer membrane of Escherichia coli, Appl. Environ. Microbiol., 46, 749, 10.1128/AEM.46.3.749-752.1983 Hoyle, 1984, Metal binding by the peptidoglycan sacculus of Escherichia coli K-12, Can. J. Microbiol., 30, 204, 10.1139/m84-031 Ishibashi, 1990, Chromium reduction in Pseudomonas putida, Appl. Environ. Microbiol., 56, 2268, 10.1128/AEM.56.7.2268-2270.1990 Janssen, 1997, Novel anaerobic ultramicrobacteria belonging to the Verrucomicrobiales lineage of bacterial descent isolated by dilution culture from anoxic rice paddy soil, Appl. Environ. Microbiol., 63, 1382, 10.1128/AEM.63.4.1382-1388.1997 Jones, 1997, Biogenicity of silica precipitation around geysers and hot-spring vents, North Island, New Zealand, J. Sediment. Res., 67, 88 Jones, 1997, Vertical zonation of biota in microstromatolites associated with hot springs, North Island, New Zealand, Palaios, 12, 220, 10.2307/3515424 Kadurugamuwa, 1995, Virulence factors are released from Pseudomonas aeruginosa in association with membrane vesicles during normal growth and exposure to gentamicin: a novel mechanism of enzyme secretion, J. Bacteriol., 177, 3998, 10.1128/jb.177.14.3998-4008.1995 Kadurugamuwa, 1996, Bacteriolytic effect of membrane vesicles from Pseudomonas aeruginosa on other bacteria including pathogens: conceptually new antibiotics, J. Bacteriol., 178, 2767, 10.1128/jb.178.10.2767-2774.1996 Kajander, 1998, Nanobacteria: an alternative mechanism for pathogenic intra- and extracellular calcification and stone formation, PNAS USA, 95, 8274, 10.1073/pnas.95.14.8274 Kirkland, 1999, Alternative origins for nannobacteria-like objects in calcite, Geology, 27, 347, 10.1130/0091-7613(1999)027<0347:AOFNLO>2.3.CO;2 Kirschvink, 1984, Ultrafine-grained magnetite in deep-sea sediments: possible bacterial magnetofossils, Geology, 12, 559, 10.1130/0091-7613(1984)12<559:UMIDSP>2.0.CO;2 Koch, 1996, What size should a bacterium be? A question of scale, Annu. Rev. Microbiol., 50, 317, 10.1146/annurev.micro.50.1.317 Konhauser, 1998, Diversity of bacterial iron mineralization, Earth Sciences Rev., 43, 91, 10.1016/S0012-8252(97)00036-6 Konhauser, K., 1999. Hydrothermal bacterial biomineralization: potential modern-day analogues for banded iron formation. In: Glenn, C.R., Lucas, J., Prévôt, L. (Eds.), Marine Authigenesis: From Global to Microbial. Soc. Econ. Paleontol. Mineral. Spec. Publ., in review. Konhauser, 1996, Diversity of iron and silica precipitation by microbial mats in hydrothermal waters, Iceland: implications for Precambrian iron formations, Geology, 24, 323, 10.1130/0091-7613(1996)024<0323:DOIASP>2.3.CO;2 Lovley, 1983, Sulfate reducers can outcompete methanogens at freshwater sulfate concentrations, Appl. Environ. Microbiol., 45, 187, 10.1128/AEM.45.1.187-192.1983 Lovley, 1987, Competitive mechanisms for inhibitions of sulfate reduction and methane production in the zone of ferric iron reduction in sediments, Appl. Environ. Microbiol., 53, 2636, 10.1128/AEM.53.11.2636-2641.1987 Lovley, 1988, Novel mode of microbial energy metabolism: organic carbon oxidation coupled to dissimilatory reduction of iron or manganese, Appl. Environ. Microbiol., 54, 1472, 10.1128/AEM.54.6.1472-1480.1988 Lovley, 1987, Anaerobic production of magnetite by a dissimilatory iron-reducing microorganism, Nature, 330, 252, 10.1038/330252a0 Lovley, 1991, Microbial reduction of uranium, Nature, 350, 413, 10.1038/350413a0 Lowenstam, 1981, Minerals formed by organisms, Nature, 211, 1126 Macaskie, 1987, Cadmium accumulation by a Citrobacter sp.: the chemical nature of the accumulated metal precipitate and its location on the bacterial cells, J. Gen. Microbiol., 133, 539 MacDonnell, 1982, Isolation and characterization of ultramicrobacteria from a Gulf Coast estuary, Appl. Environ. Microbiol., 43, 566, 10.1128/AEM.43.3.566-571.1982 Mann, 1985, Uranium uptake by algae: experimental and natural environments, Can. J. Earth Sci., 22, 1899, 10.1139/e85-205 Mann, 1987, Cellular lepidocrocite precipitation and heavy metal sorption in Euglena sp. (unicellular alga): implications for biomineralization, Chem. Geol., 63, 39, 10.1016/0009-2541(87)90072-6 McKay, 1996, Search for past life on Mars: possible relic biogenic activity in Martian meteorite ALH84001, Science, 273, 924, 10.1126/science.273.5277.924 Mittelman, 1985, Copper-binding characteristics of exopolymers from a freshwater sediment bacterium, Appl. Environ. Microbiol., 49, 846, 10.1128/AEM.49.4.846-851.1985 Morita, 1955, Occurrence of bacteria in pelagic sediments collected during the mid-Pacific Expedition, Deep-Sea Res., 3, 66, 10.1016/0146-6313(55)90036-8 Mullen, 1989, Bacterial sorption of heavy metals, Appl. Environ. Microbiol., 55, 3143, 10.1128/AEM.55.12.3143-3149.1989 Mullen, 1992, Sorption of heavy metals by the soil fungi Aspergillus niger and Mucor roux II, Soil Biol. Biochem., 24, 129, 10.1016/0038-0717(92)90268-3 Mushegian, 1996, A minimal gene set for cellular life derived from comparison of complete bacterial genomes, PNAS USA, 93, 10268, 10.1073/pnas.93.19.10268 Myers, 1988, Bacterial manganese reduction and growth with manganese oxide as the sole electron acceptor, Science, 240, 1319, 10.1126/science.240.4857.1319 Nakajima, 1981, Distribution and chemical state of heavy metal ions absorbed by Chlorella cells, Agric. Biol. Chem., 45, 903, 10.1271/bbb1961.45.903 Nealson, 1997, The limits of life on Earth and searching for life on Mars, J. Geophys. Res., 102, 23675, 10.1029/97JE01996 Nealson, 1997, Sediment bacteria: who's there, what are they doing, and what's new?, Annu. Rev. Earth Planet. Sci., 25, 403, 10.1146/annurev.earth.25.1.403 Nealson, 1992, Microbial reduction of manganese and iron: new approaches to carbon cycling, Appl. Environ. Microbiol., 58, 439, 10.1128/AEM.58.2.439-443.1992 Nealson, 1991, Isolation and identification of manganese reducing bacteria and estimates of microbial Mn(IV)-reducing potential in the Black Sea, Deep-Sea Res., 38, S907, 10.1016/S0198-0149(10)80016-0 Novitsky, 1976, Morphological characterization of small cells resulting from nutrient starvation in a psychrophilic marine vibrio, Appl. Environ. Microbiol., 32, 619, 10.1128/AEM.32.4.617-622.1976 O'Brien, 1981, Bacterial origin of East Australian continental margin phosphorites, Nature, 294, 442, 10.1038/294442a0 Pedersen, 1997, Evidence of ancient life at 207 m depth in a granitic aquifer, Geology, 25, 827, 10.1130/0091-7613(1997)025<0827:EOALAM>2.3.CO;2 Pedone, 1996, Formation or aragonite cement by nannobacteria in the Great Salt Lake, Utah, Geology, 8, 763, 10.1130/0091-7613(1996)024<0763:FOACBN>2.3.CO;2 Pflug, 1979, Combined structural and chemical analysis of 3,800-Myr-old microfossils, Nature, 280, 483, 10.1038/280483a0 Pirie, 1973, On being the right size, Annu. Rev. Microbiol., 27, 119, 10.1146/annurev.mi.27.100173.001003 Purcell, 1977, Life at low Reynold's number, Am. J. Phys., 45, 3, 10.1119/1.10903 Rodgers, 1976, Measurement of growth and iron deposition in Sphaerotilus discophorus, J. Bacteriol., 126, 257, 10.1128/JB.126.1.257-263.1976 Schidlowski, M., Hayes, J.M., Kaplan, I.R., 1983. Isotopic inferences of ancient biochemistries: carbon, sulfur, hydrogen and nitrogen. In: Schopf, J.W. (Ed.), Earth's Earliest Biosphere. Its Origin and Evolution. Princeton Univ. Press, Princeton, NJ, pp. 149–186. Schopf, J.W., Walter, M.R., 1983. Archaean microfossils: new evidence of ancient microbes. In: Schopf, J.W. (Ed.), Earth's Earliest Biosphere. Its Origin and Evolution. Princeton Univ. Press, Princeton, NJ, pp. 214–239. Schultze-Lam, 1992, Participation of a cyanobacterial S layer in fine-grain mineral formation, J. Bacteriol., 174, 7971, 10.1128/jb.174.24.7971-7981.1992 Schultze-Lam, 1995, In situ silicification of an Icelandic hot spring microbial mat: implications for microfossil formation, Can. J. Earth Sci., 32, 2021, 10.1139/e95-155 Sillitoe, 1996, Bacteria as mediators of copper sulfide enrichment during weathering, Science, 272, 1153, 10.1126/science.272.5265.1153 Southam, G., Ferris, G.F., Beveridge, T.J., 1995. Mineralized bacterial biofilms in sulfide tailings and in acid mine drainage systems. In: Lappin-Scott, H.M., Costerton, J.W. (Eds.), Microbial Biofilms. Cambridge Univ. Press, Cambridge, Great Britain, pp. 148–170. Southam, G., Donald, R., Castro, P., Pitonzo, B., Amy, P. 1997. Microbially induced corrosion and precipitation of iron phosphates by deep subsurface bacteria grown as biofilms on 1020 carbon steel. Seventh Annual V.M. Goldschmidt conference. LPI contribution No. 921, Lunar and Planetary Institute, Houston, USA, 194. Stetter, 1990, Hyperthermophilic microorganisms, FEMS Microbiol. Rev., 75, 117, 10.1111/j.1574-6968.1990.tb04089.x Stevens, 1995, Lithotrophic microbial ecosystems in deep bassalt aquifers, Science, 270, 450, 10.1126/science.270.5235.450 Stevens, 1993, Bacteria associated with deep, alkaline, anaerobic groundwaters in southeast Washington, Microb. Ecol., 25, 35, 10.1007/BF00182128 Tazaki, 1992, Iron and graphite associated with fossil bacteria in chert, Chem. Geol., 95, 313, 10.1016/0009-2541(92)90019-2 Thompson, 1990, Cyanobacterial precipitation of gypsum, calcite and magnesite from natural alkaline lake water, Geology, 18, 995, 10.1130/0091-7613(1990)018<0995:CPOGCA>2.3.CO;2 Timperley, 1974, The formation and detection of metal dispersion halos in organic lake sediments, J. Geochem. Explor., 3, 167, 10.1016/0375-6742(74)90032-6 Torrella, 1981, Microcultural study of bacterial size changes and microcolony and ultramicrocolony formation by heterotrophic bacteria in seawater, Appl. Environ. Microbiol., 41, 518, 10.1128/AEM.41.2.518-527.1981 Trudinger, 1985, Low-temperature sulphate reduction: biological versus abiological, Can. J. Earth Sci., 22, 1910, 10.1139/e85-207 Tuttle, 1969, Microbial sulfate reduction and its potential utility as an acid mine water pollution abatement, Appl. Environ. Microbiol., 100, 594 Urrutia, 1993, Mechanism of silicate binding to the bacterial cell wall in Bacillus subtilis, J. Bacteriol., 175, 1936, 10.1128/jb.175.7.1936-1945.1993 Urrutia, 1992, The membrane-induced proton motive force influences the metal binding ability of Bacillus subtilis cell walls, Appl. Environ. Microbiol., 58, 3837, 10.1128/AEM.58.12.3837-3844.1992 Vasconcelos, 1997, Microbial mediation of modern dolomite precipitation and diagenesis under anoxic conditions (Lagoa Vermelha, Rio De Janeiro, Brazil), J. Sediment. Res., 67, 378 Walter, 1972, Siliceous algal and bacterial stromatolites in hot springs and geyser effluents of Yellowstone National Park, Science, 178, 402, 10.1126/science.178.4059.402 Westall, 1995, The experimental silicification of microorganisms, Palaeontology, 38, 495 Youssef, 1965, Genesis of bedded phosphates, Econ. Geol., 60, 590, 10.2113/gsecongeo.60.3.590