A strongly polynomial minimum cost circulation algorithm

Combinatorica - Tập 5 Số 3 - Trang 247-255 - 1985
Éva Tardos1
1Research Institute for Telecommunication, Gábor Á. u. 65, 1026, Budapest, Hungary

Tóm tắt

Từ khóa


Tài liệu tham khảo

R. P. Anstee, A polynomial algorithm forb-matching: an alternative approach,Research Report CORR 83–22, University Waterloo, Waterloo, Ontario, 1983.

W. H. Cunningham andA. Frank, A primal dual algorithm for submodular flows;Mathematics of Operations Research,10 (1985), 251–262.

E. A. Dinits, Algorithm for solution of a problem of maximum flow in a network with power estimation;Soviet Math. Dokl.,11 (1970), 1277–1280.

J. Edmonds, Systems of distinct representatives and linear algebra;J. Res. Nat. Bur. Standards,71 B (1967), 241–245.

J. Edmonds, Submodular functions, matroids and certain polyhedra, in:Combinatorial Structures and Applications, (R. K. Guy et al. eds.) 1970 Gordon and Breach, New York 67–87.

J. Edmonds andR. Giles, A min-max relation for submodular functions on graphs,Annals of Discrete Math. 1 (1977), 185–204.

J. Edmonds andR. M. Karp, Theoretical improvements in algorithmic efficiency for network flow problems,J. ACM 19 (1972), 248–264.

L. R. Ford, jr. andD. R. Fulkerson,Flows in Networks, Princeton University Press, Princeton N. J., 1962.

D. R. Fulkerson, An Out-of-Kilter method for minimal cost flow problems,J. Soc. Indust. Appl. Math. 9 (1961), 18–27.

A. K. Lenstra, H. W. Lenstra, jr. andL. Lovász, Factoring polynomials with rational coefficients,Math. Ann. 261 (1982), 515–534.

C. L. Lucchesi andD. H. Younger, A minimax theorem for directed graphs,J. London Math. Soc. 17 (1978), 368–374.

N. Megiddo, Towards a genuinely polynomial algorithm for linear programming,SIAM J. Comput. 12 (1981), 347–353.

G. J. Minty, Monotone Networks,Proc. Roy. Soc. London, Ser. A,257 (1960), 194–212.

H. Röck, Scaling techniques for minimal cost network flows, in:Discrete Structures and Algorithms, (U. Page ed.) 1980, Carl Hanser, München, 181–191.