A strong version of Implicit Function Theorem
Tóm tắt
Từ khóa
Tài liệu tham khảo
Artin, M.: Algebraic approximation of structures over complete local rings. Inst. Hautes Études Sci. Publ. Math. 36, 23–58 (1969)
Bandman, T., Garion, S., Kunyavskii, B.: Equations in simple matrix groups: algebra, geometry, arithmetic, dynamics. Cent. Eur. J. Math. 12(2), 175–211 (2014)
Belitski, G., Kerner, D.: Finite determinacy of matrices over local rings.I, arXiv:1212.6894
Belitski, G., Kerner, D.: Finite determinacy of matrices over local rings. II. Computation of $${\rm ann}\, T_{({\rm \Sigma },A)}/T_{(GA,A)}$$ ann T ( Σ , A ) / T ( G A , A ) (2015). arXiv:1501.07168
Bruschek, C., Hauser, H.: Arcs, cords, and felts-six instances of the linearization principle. Amer. J. Math. 132(4), 941–986 (2010)
Damon, J.: The Unfolding and Determinacy Theorems for Subgroups of $$\fancyscript {A}$$ A and $$\fancyscript {K}$$ K . Mem. Amer. Math. Soc. 50 306, (1984)
Denef, J., Loeser, F.: Germs of arcs on singular algebraic varieties and motivic integration. Invent. Math. 135(1), 201–232 (1999)
Eisenbud, D.: Commutative algebra. With a view toward algebraic geometry. Graduate Texts in Mathematics, vol. 150. Springer-Verlag, New York (1995)
Fisher, B.: A note on Hensel’s lemma in several variables. Proc. Amer. Math. Soc. 125(11), 3185–3189 (1997)
Gaffney, T.J.: Properties of Finitely Determined Germs. Thesis (Ph.D.) Brandeis University. 1976
Greuel, G.-M., Lossen, C., Shustin, E.: Introduction to singularities and deformations. Springer Monographs in Mathematics. Springer, Berlin, 2007. xii+471 pp
G. Gonzalez-Sprinberg, M. Lejeune-Jalabert, Courbes lisses sur les singularités de surface, C. R. Acad. Sci. Paris, t. Sétie, I, 318 (1994), pp. 653–656
Jiang, G., Oka, M.: Lines on non-degenerate surfaces. Kodaira’s issue. Asian J. Math. 4(1), 97–113 (2000)
Jiang, G., Oka, M., Duc, T.P., Siersma, D.: Lines on Brieskorn–Pham surfaces. Kodai Math. J. 23(2), 214–223 (2000)
Rond, G., Hauser, H.: Artin Approximation, manuscript, http://homepage.univie.ac.at/herwig.hauser/Publications/artin_survey_gr_2013.pdf
Huneke, C., Swanson, I.: Integral closure of ideals, rings, and modules. London Mathematical Society Lecture Note Series, 336. Cambridge University Press, Cambridge, (2006)
Kurke, H., Pfister, G., Popescu, D., Roczen, M., Mostowski, T.: Die Approximationseigenschaft lokaler Ringe. Lecture Notes in Mathematics, Vol. 634. Springer-Verlag, Berlin-New York, (1978)
Mather, J.N.: Stability of $$C^\infty $$ C ∞ -mappings. I. The division theorem. Ann. of Math. (2) 87, 89–104 (1968)
Mather, J.N.: Stability of $$C^\infty $$ C ∞ -mappings. II. Infinitesimal stability implies stability. Ann. of Math. (2) 89, 254–291 (1969)
Mather, J.N.: Stability of $$C^\infty $$ C ∞ -mappings. III. Finitely determined map-germs. Inst. Hautes Études Sci. Publ. Math. 35, 279–308 (1968)
Pellikaan, R.: Finite determinacy of functions with nonisolated singularities. Proc. London Math. Soc. (3) 57(2), 357–382 (1988)
Rond, G.: Sur la linearite de la fonction de Artin. Ann. Sci. École Norm. Sup. (4) 38(6), 979–988 (2005)
Rond, G.: Bornes effectives des fonctions d’approximation des solutions formelles d’Équations binomiales. J. Algebra 323(9), 2547–2555 (2010)
Rudin, W.: Real and complex analysis. Third edition. McGraw-Hill Book Co., New York, 1987. xiv+416 pp
Siersma, D.: Isolated line singularities. Singularities, Part 2 (Arcata, Calif., 1981), 485–496, Proc. Sympos. Pure Math., 40, Amer. Math. Soc., Providence, RI, 1983
Siersma, D.: Singularities with critical locus a 1-dimensional complete intersection and transversal type $$A_1$$ A 1 . Topology Appl. 27(1), 51–73 (1987)
Tougeron, J.C.: Une généralisation du théorème des fonctions implicites. C. R. Acad. Sci. Paris Sér. A–B 262, A487–A489 (1966)
Tougeron, J.C.: Idéaux de fonctions différentiables. I. Ann. Inst. Fourier (Grenoble) 18 1968 fasc. 1, 177–240
Tougeron, J.C.: Idéaux de fonctions différentiables. Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 71. Springer-Verlag, Berlin-New York, (1972)
Tougeron, J.C.: Solutions d’un système d’équations analytiques réelles et applications. Ann. Inst. Fourier (Grenoble) 26 (1976), no. 3, x, 109–135