A strategy to detect the effect of electrode defects on the electrical reliability in multilayer ceramic capacitors
Tài liệu tham khảo
Randall, 2001, Scientific and engineering issues of the state-of-the-art and future multilayer capacitors, J. Ceram. Soc. Jpn., 109, S2, 10.2109/jcersj.109.S2
Kishi, 2003, Base-metal electrode-multilayer ceramic capacitors: past, present and future perspectives, Jpn. J. Appl. Phys., Part, 42, 1, 10.1143/JJAP.42.1
Pan, 2010, A brief introduction to ceramic capacitors, IEEE Electr. Insul. Mag., 26, 44, 10.1109/MEI.2010.5482787
Hong, 2019, Perspectives and challenges in multilayer ceramic capacitors for next generation electronics, J. Mater. Chem. C, 7, 9782, 10.1039/C9TC02921D
Hao, 2015, Design, fabrication and dielectric properties in core-double shell BaTiO3-based ceramics for MLCC application, RSC Adv., 5, 8868, 10.1039/C4RA13367F
Pithan, 2005, Progress in the synthesis of nanocrystalline BaTiO(3) powders for MLCC, Int. J. Appl. Ceram. Technol., 2, 1, 10.1111/j.1744-7402.2005.02008.x
Randall, 2022, Fundamentals and practical dielectric implications of stoichiometry and chemical design in a high-performance ferroelectric oxide: BaTiO3, J. Eur. Ceram. Soc., 42, 1445, 10.1016/j.jeurceramsoc.2021.12.007
Im, 2021, Fabrication of homogeneous nanosized nickel powders using a planetary ball mill: applications to multilayer ceramic capacitors (MLCCs), Powder Technol., 382, 118, 10.1016/j.powtec.2020.12.043
Polotai, 2007, Utilization of multiple-stage sintering to control Ni electrode continuity in ultrathin Ni-BaTiO3 multilayer capacitors, J. Am. Ceram. Soc., 90, 3811, 10.1111/j.1551-2916.2007.02058.x
Polotai, 2008, Effect of heating rates during sintering on the electrical properties of ultra-thin Ni-BaTiO3 multilayer ceramic capacitors, J. Am. Ceram. Soc., 91, 2540, 10.1111/j.1551-2916.2008.02517.x
Yu, 2005, Defects of base metal electrode layers in multi-layer ceramic capacitor, J. Am. Ceram. Soc., 88, 2328, 10.1111/j.1551-2916.2005.00431.x
Okuma, 2021, Microstructural evolution of electrodes in sintering of multi-layer ceramic capacitors (MLCC) observed by synchrotron X-ray nano-CT, Acta Mater., 206, 116605, 10.1016/j.actamat.2020.116605
Chiang, 2012, Effect of TiO2 doped Ni electrodes on the dielectric properties and microstructures of (Ba0.96Ca0.04)(Ti0.85Zr0.15)O-3 multilayer ceramic capacitors, J. Eur. Ceram. Soc., 32, 865, 10.1016/j.jeurceramsoc.2011.11.009
Samantaray, 2012, Electrode defects in multilayer capacitors Part I: modeling the effect of electrode roughness and porosity on electric field enhancement and leakage current, J. Am. Ceram. Soc., 95, 257, 10.1111/j.1551-2916.2011.04769.x
Samantaray, 2012, Electrode defects in multilayer capacitors Part II: finite element analysis of local field enhancement and leakage current in three-dimensional microstructures, J. Am. Ceram. Soc., 95, 264, 10.1111/j.1551-2916.2011.04768.x
Samantaray, 2012, Effect of firing rates on electrode morphology and electrical properties of multilayer ceramic capacitors, J. Am. Ceram. Soc., 95, 992, 10.1111/j.1551-2916.2011.04880.x
Park, 2007, Thermo-mechanical stresses and mechanical reliability of multilayer ceramic capacitors (MLCC), J. Am. Ceram. Soc., 90, 2151, 10.1111/j.1551-2916.2007.01688.x
Cai, 2017, Thermal-mechanical-electrical coupled design of multilayer energy storage ceramic capacitors, Ceram. Int., 43, 12882, 10.1016/j.ceramint.2017.06.181
Dale, 2018, Finite element modeling on the effect of intra-granular porosity on the dielectric properties of BaTiO3 MLCCs, J. Am. Ceram. Soc., 101, 1211, 10.1111/jace.15261
Heath, 2019, Electric field enhancement in ceramic capacitors due to interface amplitude roughness, J. Eur. Ceram. Soc., 39, 1170, 10.1016/j.jeurceramsoc.2018.10.033
Melitz, 2011, Kelvin probe force microscopy and its application, Surf. Sci. Rep., 66, 1, 10.1016/j.surfrep.2010.10.001
Okamoto, 2011, Electric field concentration in the vicinity of the interface between anode and degraded BaTiO3-based ceramics in multilayer ceramic capacitor, Appl. Phys. Lett., 98, 10.1063/1.3555466
Suzuki, 2013, Insulation degradation behavior of multilayer ceramic capacitors clarified by Kelvin probe force microscopy under ultra-high vacuum, J. Appl. Phys., 113, 10.1063/1.4791714
Morelli, 2021, Nanoscale mapping of potential barrier degradation at BaTiO3-Ni interfaces, ACS Appl. Electron. Mater., 3, 4649, 10.1021/acsaelm.1c00852
Wang, 1997, Application of Weibull distribution analysis to the dielectric failure of multilayer ceramic capacitors, Mater. Sci. Eng., B, 47, 197, 10.1016/S0921-5107(97)00041-X
Wang, 2013, Dielectric constant and breakdown strength of polymer composites with high aspect ratio fillers studied by finite element models, Compos. Sci. Technol., 76, 29, 10.1016/j.compscitech.2012.12.014
Cai, 2019, High-temperature lead-free multilayer ceramic capacitors with ultrahigh energy density and efficiency fabricated via two-step sintering, J. Mater. Chem., 7, 14575, 10.1039/C9TA04317A
Pitike, 2014, Phase-field model for dielectric breakdown in solids, J. Appl. Phys., 115
Liu, 2022, Lead-free multilayer ceramic capacitors with ultra-wide temperature dielectric stability based on multifaceted modification, J. Eur. Ceram. Soc., 42, 973, 10.1016/j.jeurceramsoc.2021.10.048
Morita, 2007, Electric conduction of thin-layer Ni-multilayer ceramic capacitors with core-shell structure BaTiO3, Jpn. J. Appl. Phys., Part, 1 46, 2984, 10.1143/JJAP.46.2984
Gong, 2014, Grain size effect on electrical and reliability characteristics of modified fine-grained BaTiO3 ceramics for MLCCs, J. Eur. Ceram. Soc., 34, 1733, 10.1016/j.jeurceramsoc.2013.12.028
Zhu, 2020, High reliable non-reducible ultra-fine BaTiO3-based ceramics fabricated via solid-state method, J. Alloys Compd., 829, 154496, 10.1016/j.jallcom.2020.154496
Chazono, 2001, Dc-electrical degradation of the BT-based material for multilayer ceramic capacitor with Ni internal electrode: impedance analysis and microstructure, Jpn. J. Appl. Phys., Part, 1 40, 5624, 10.1143/JJAP.40.5624
Yang, 2004, Oxygen nonstoichiometry and dielectric evolution of BaTiO3. Part II - insulation resistance degradation under applied dc bias, J. Appl. Phys., 96, 7500, 10.1063/1.1809268
Yoo, 2007, Electrocoloration and oxygen vacancy mobility of BaTiO3, J. Appl. Phys., 102, 10.1063/1.2802290
Nishida, 2009, Raman spectroscopy evaluation of oxygen vacancy migration by electrical field in multilayer ceramic capacitors, Jpn. J. Appl. Phys., 48, 10.1143/JJAP.48.09KF11
Honda, 2011, Theoretical study on interactions between oxygen vacancy and doped rare-earth elements in barium titanate, Jpn. J. Appl. Phys., 50, 10.1143/JJAP.50.09NE01
Zhang, 2016, Highly accelerated resistance degradation and thermally stimulated relaxation in BaTiO3-based multilayer ceramic capacitors with Y5V specification, J. Alloys Compd., 662, 308, 10.1016/j.jallcom.2015.12.035
Zhao, 2019, High-performance relaxor ferroelectric materials for energy storage applications, Adv. Energy Mater., 9, 1803048, 10.1002/aenm.201803048
Wang, 2020, Effects of dielectric thickness on energy storage properties of surface modified BaTiO3 multilayer ceramic capacitors, J. Alloys Compd., 817, 152804, 10.1016/j.jallcom.2019.152804
Zhao, 2018, The properties of Al2O3 coated fine-grain temperature stable BaTiO3-based ceramics sintered in reducing atmosphere, J. Am. Ceram. Soc., 101, 1245, 10.1111/jace.15287