A strategy to detect the effect of electrode defects on the electrical reliability in multilayer ceramic capacitors

Materials Today Energy - Tập 27 - Trang 101022 - 2022
Weichen Zhang1, Chaoqiong Zhu1, Kezhen Hui1, Peiyao Zhao1, Limin Guo2, Ziming Cai3, Longtu Li1, Xiaohui Wang1
1State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
2School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China
3School of Materials Science and Physics, China University of Mining and Technology, Xuzhou, 221116, China

Tài liệu tham khảo

Randall, 2001, Scientific and engineering issues of the state-of-the-art and future multilayer capacitors, J. Ceram. Soc. Jpn., 109, S2, 10.2109/jcersj.109.S2 Kishi, 2003, Base-metal electrode-multilayer ceramic capacitors: past, present and future perspectives, Jpn. J. Appl. Phys., Part, 42, 1, 10.1143/JJAP.42.1 Pan, 2010, A brief introduction to ceramic capacitors, IEEE Electr. Insul. Mag., 26, 44, 10.1109/MEI.2010.5482787 Hong, 2019, Perspectives and challenges in multilayer ceramic capacitors for next generation electronics, J. Mater. Chem. C, 7, 9782, 10.1039/C9TC02921D Hao, 2015, Design, fabrication and dielectric properties in core-double shell BaTiO3-based ceramics for MLCC application, RSC Adv., 5, 8868, 10.1039/C4RA13367F Pithan, 2005, Progress in the synthesis of nanocrystalline BaTiO(3) powders for MLCC, Int. J. Appl. Ceram. Technol., 2, 1, 10.1111/j.1744-7402.2005.02008.x Randall, 2022, Fundamentals and practical dielectric implications of stoichiometry and chemical design in a high-performance ferroelectric oxide: BaTiO3, J. Eur. Ceram. Soc., 42, 1445, 10.1016/j.jeurceramsoc.2021.12.007 Im, 2021, Fabrication of homogeneous nanosized nickel powders using a planetary ball mill: applications to multilayer ceramic capacitors (MLCCs), Powder Technol., 382, 118, 10.1016/j.powtec.2020.12.043 Polotai, 2007, Utilization of multiple-stage sintering to control Ni electrode continuity in ultrathin Ni-BaTiO3 multilayer capacitors, J. Am. Ceram. Soc., 90, 3811, 10.1111/j.1551-2916.2007.02058.x Polotai, 2008, Effect of heating rates during sintering on the electrical properties of ultra-thin Ni-BaTiO3 multilayer ceramic capacitors, J. Am. Ceram. Soc., 91, 2540, 10.1111/j.1551-2916.2008.02517.x Yu, 2005, Defects of base metal electrode layers in multi-layer ceramic capacitor, J. Am. Ceram. Soc., 88, 2328, 10.1111/j.1551-2916.2005.00431.x Okuma, 2021, Microstructural evolution of electrodes in sintering of multi-layer ceramic capacitors (MLCC) observed by synchrotron X-ray nano-CT, Acta Mater., 206, 116605, 10.1016/j.actamat.2020.116605 Chiang, 2012, Effect of TiO2 doped Ni electrodes on the dielectric properties and microstructures of (Ba0.96Ca0.04)(Ti0.85Zr0.15)O-3 multilayer ceramic capacitors, J. Eur. Ceram. Soc., 32, 865, 10.1016/j.jeurceramsoc.2011.11.009 Samantaray, 2012, Electrode defects in multilayer capacitors Part I: modeling the effect of electrode roughness and porosity on electric field enhancement and leakage current, J. Am. Ceram. Soc., 95, 257, 10.1111/j.1551-2916.2011.04769.x Samantaray, 2012, Electrode defects in multilayer capacitors Part II: finite element analysis of local field enhancement and leakage current in three-dimensional microstructures, J. Am. Ceram. Soc., 95, 264, 10.1111/j.1551-2916.2011.04768.x Samantaray, 2012, Effect of firing rates on electrode morphology and electrical properties of multilayer ceramic capacitors, J. Am. Ceram. Soc., 95, 992, 10.1111/j.1551-2916.2011.04880.x Park, 2007, Thermo-mechanical stresses and mechanical reliability of multilayer ceramic capacitors (MLCC), J. Am. Ceram. Soc., 90, 2151, 10.1111/j.1551-2916.2007.01688.x Cai, 2017, Thermal-mechanical-electrical coupled design of multilayer energy storage ceramic capacitors, Ceram. Int., 43, 12882, 10.1016/j.ceramint.2017.06.181 Dale, 2018, Finite element modeling on the effect of intra-granular porosity on the dielectric properties of BaTiO3 MLCCs, J. Am. Ceram. Soc., 101, 1211, 10.1111/jace.15261 Heath, 2019, Electric field enhancement in ceramic capacitors due to interface amplitude roughness, J. Eur. Ceram. Soc., 39, 1170, 10.1016/j.jeurceramsoc.2018.10.033 Melitz, 2011, Kelvin probe force microscopy and its application, Surf. Sci. Rep., 66, 1, 10.1016/j.surfrep.2010.10.001 Okamoto, 2011, Electric field concentration in the vicinity of the interface between anode and degraded BaTiO3-based ceramics in multilayer ceramic capacitor, Appl. Phys. Lett., 98, 10.1063/1.3555466 Suzuki, 2013, Insulation degradation behavior of multilayer ceramic capacitors clarified by Kelvin probe force microscopy under ultra-high vacuum, J. Appl. Phys., 113, 10.1063/1.4791714 Morelli, 2021, Nanoscale mapping of potential barrier degradation at BaTiO3-Ni interfaces, ACS Appl. Electron. Mater., 3, 4649, 10.1021/acsaelm.1c00852 Wang, 1997, Application of Weibull distribution analysis to the dielectric failure of multilayer ceramic capacitors, Mater. Sci. Eng., B, 47, 197, 10.1016/S0921-5107(97)00041-X Wang, 2013, Dielectric constant and breakdown strength of polymer composites with high aspect ratio fillers studied by finite element models, Compos. Sci. Technol., 76, 29, 10.1016/j.compscitech.2012.12.014 Cai, 2019, High-temperature lead-free multilayer ceramic capacitors with ultrahigh energy density and efficiency fabricated via two-step sintering, J. Mater. Chem., 7, 14575, 10.1039/C9TA04317A Pitike, 2014, Phase-field model for dielectric breakdown in solids, J. Appl. Phys., 115 Liu, 2022, Lead-free multilayer ceramic capacitors with ultra-wide temperature dielectric stability based on multifaceted modification, J. Eur. Ceram. Soc., 42, 973, 10.1016/j.jeurceramsoc.2021.10.048 Morita, 2007, Electric conduction of thin-layer Ni-multilayer ceramic capacitors with core-shell structure BaTiO3, Jpn. J. Appl. Phys., Part, 1 46, 2984, 10.1143/JJAP.46.2984 Gong, 2014, Grain size effect on electrical and reliability characteristics of modified fine-grained BaTiO3 ceramics for MLCCs, J. Eur. Ceram. Soc., 34, 1733, 10.1016/j.jeurceramsoc.2013.12.028 Zhu, 2020, High reliable non-reducible ultra-fine BaTiO3-based ceramics fabricated via solid-state method, J. Alloys Compd., 829, 154496, 10.1016/j.jallcom.2020.154496 Chazono, 2001, Dc-electrical degradation of the BT-based material for multilayer ceramic capacitor with Ni internal electrode: impedance analysis and microstructure, Jpn. J. Appl. Phys., Part, 1 40, 5624, 10.1143/JJAP.40.5624 Yang, 2004, Oxygen nonstoichiometry and dielectric evolution of BaTiO3. Part II - insulation resistance degradation under applied dc bias, J. Appl. Phys., 96, 7500, 10.1063/1.1809268 Yoo, 2007, Electrocoloration and oxygen vacancy mobility of BaTiO3, J. Appl. Phys., 102, 10.1063/1.2802290 Nishida, 2009, Raman spectroscopy evaluation of oxygen vacancy migration by electrical field in multilayer ceramic capacitors, Jpn. J. Appl. Phys., 48, 10.1143/JJAP.48.09KF11 Honda, 2011, Theoretical study on interactions between oxygen vacancy and doped rare-earth elements in barium titanate, Jpn. J. Appl. Phys., 50, 10.1143/JJAP.50.09NE01 Zhang, 2016, Highly accelerated resistance degradation and thermally stimulated relaxation in BaTiO3-based multilayer ceramic capacitors with Y5V specification, J. Alloys Compd., 662, 308, 10.1016/j.jallcom.2015.12.035 Zhao, 2019, High-performance relaxor ferroelectric materials for energy storage applications, Adv. Energy Mater., 9, 1803048, 10.1002/aenm.201803048 Wang, 2020, Effects of dielectric thickness on energy storage properties of surface modified BaTiO3 multilayer ceramic capacitors, J. Alloys Compd., 817, 152804, 10.1016/j.jallcom.2019.152804 Zhao, 2018, The properties of Al2O3 coated fine-grain temperature stable BaTiO3-based ceramics sintered in reducing atmosphere, J. Am. Ceram. Soc., 101, 1245, 10.1111/jace.15287