A stochastic nominal control optimizing the adoptive immunotherapy for cancer using tumor-infiltrating lymphocytes
Tóm tắt
Từ khóa
Tài liệu tham khảo
Allen LJ (2010) An introduction to stochastic processes with applications to biology. CRC Press, Boca Raton
Babaei N, Salamci MU (2014) State dependent riccati equation based model reference adaptive stabilization of nonlinear systems with application to cancer treatment. In: Proceedings of the 19th IFAC world congress, Cape Town, South Africa
Babaei N, Salamci MU (2015) Personalized drug administration for cancer treatment using model reference adaptive control. J Theor Biol 371:24–44
Beerenwinkel N, Schwarz RF, Gerstung M, Markowetz F (2015) Cancer evolution: mathematical models and computational inference. Syst Biol 64(1):e1–e25
Ben-Ami E, Schachter J (2015) Adoptive transfer of tumor-infiltrating lymphocytes for melanoma: new players, old game. Immunotherapy 7(5):477–479
Blattman JN, Greenberg PD (2004) Cancer immunotherapy: a treatment for the masses. Science 305(5681):200–205
Blinov N, Berjanskii M, Wishart DS, Stepanova M (2009) Structural domains and main-chain flexibility in prion proteins. Biochemistry 48(7):1488–1497
Bonadonna G, Valagussa P (1983) Chemotherapy of breast cancer: current views and results. Int J Radiat Oncol Biol Phys 9(3):279–297
Bunimovich-Mendrazitsky S, Shochat E, Stone L (2007) Mathematical model of BCG immunotherapy in superficial bladder cancer. Bull Math Biol 69(6):1847–1870
Burden TN, Ernstberger J, Fister KR (2004) Optimal control applied to immunotherapy. Discret Contin Dyn Syst Ser B 4(1):135–146
Cardinale RM, Benedict SH, Wu Q, Zwicker RD, Gaballa HE, Mohan R (1998) A comparison of three stereotactic radiotherapy techniques; ARCS vs. noncoplanar fixed fields vs. intensity modulation. Int J Radiat Oncol Biol Phys 42(2):431–436
Castiglione F, Piccoli B (2007) Cancer immunotherapy, mathematical modeling and optimal control. J Theor Biol 247(4):723–732
Cheney E, Kincaid D (2012) Numerical mathematics and computing. Cengage Learning, Boston
Cimen T (2008) State-dependent Riccati equation (SDRE) control: a survey. In Proceedings of the 17th world congress of the international federation of automatic control (IFAC), Seoul, Korea, July pp 6–11
Couzin-Frankel J (2013) Cancer immunotherapy. Science 342(6165):1432–1433
Darcy PK, Neeson PJ (2015) Adoptive immunotherapy: a new era for the treatment of cancer. Immunotherapy 7(5):469–471
De Pillis LG, Gu W, Radunskaya AE (2006) Mixed immunotherapy and chemotherapy of tumors: modeling, applications and biological interpretations. J Theor Biol 238(4):841–862
Dutcher J (2002) urrent status of interleukin-2 therapy for metastatic renal cell carcinoma and metastatic melanoma. Oncology (Williston Park, NY) 16(11 Suppl 13):4–10
Ehrenberg M, Elf J, Aurell E, Sandberg R, Tegner J (2003) Systems biology is taking off. Genome Res 13(11):2377–2380
Elmouki I, Saadi S (2014) BCG immunotherapy optimization on an isoperimetric optimal control problem for the treatment of superficial bladder cancer. Int J Dyn Control. doi:10.1007/s40435-014-0106-5
Elmouki I, Saadi S (2015) Quadratic and linear controls developing an optimal treatment for the use of BCG immunotherapy in superficial bladder cancer. Opt Control Appl Methods 37(1):176–189
Elowitz MB, Levine AJ, Siggia ED, Swain PS (2002) Stochastic gene expression in a single cell. Science 297(5584):1183–1186
Gattinoni L, Powell DJ, Rosenberg SA, Restifo NP (2006) Adoptive immunotherapy for cancer: building on success. Nat Rev Immunol 6(5):383–393
Ghaffari A, Nazari M, Arab F (2015) Suboptimal mixed vaccine and chemotherapy in finite duration cancer treatment: state-dependent Riccati equation control. J Braz Soc Mech Sci Eng 37(1):45–56
Grewal MS, Andrews AP (2014) Kalman filtering: theory and practice with MATLAB, 4th edn. Wiley, Hoboken
Hamdache A, Saadi S, Elmouki I, Zouhri S (2013) Two therapeutic approaches for the treatment of HIV infection in AIDS stage. Appl Math Sci 7(105):5243–5257
Hamdache A, Elmouki I, Saadi S (2014) Optimal control with an isoperimetric constraint applied to cancer immunotherapy. Int J Comput Appl 94(15):31–37
Hamdache A, Saadi S, Elmouki I (2015) Nominal and neighboring-optimal control approaches to the adoptive immunotherapy for cancer. Int J Dyn Control. doi:10.1007/s40435-015-0205-y
Herskovic A, Martz K, Al-Sarraf M, Leichman L, Brindle J, Vaitkevicius V, Emami B (1992) Combined chemotherapy and radiotherapy compared with radiotherapy alone in patients with cancer of the esophagus. N Engl J Med 326(24):1593–1598
Kalman RE, Bucy RS (1961) New results in linear filtering and prediction theory. J Fluids Eng 83(1):95–108
Kirschner D, Panetta JC (1998) Modeling immunotherapy of the tumorimmune interaction. J Math Biol 37(3):235–252
Kirschner D, Tsygvintsev A (2009) On the global dynamics of a model for tumor immunotherapy. Math Biosci Eng 6(3):573–583
Ladyzhenskaya OA, Solonnikov VA, Uralceva NN (1968) Linear and quasilinear equations of parabolic type, translations of mathematical monographs, vol 23. American Mathematical Society, Providence
Lenhart S, Workman JT (2007) Optimal control applied to biological models. CRC Press, Boca Raton
Ludwig D (1974) Stochastic population theories, lecture notes in biomathematics, vol 3. Springer, Berlin
Luzyanina T, Bocharov G (2014) Stochastic modeling of the impact of random forcing on persistent hepatitis B virus infection. Math Comput Simul 96:54–65
Ma J, Protter P, Yong J (1994) Solving forward–backward stochastic differential equations explicitly: a four step scheme. Probab Theory Relat Fields 98(3):339–359
Ma J, Yong J (1999) Forward–backward stochastic differential equations and their applications. Springer, Berlin
Ma J, Yong J (1995) Solvability of forward-backward SDEs and the nodal set of HJB equations. Chin Ann Math 16:279–298
MacCheever MA (2008) Twelve immunotherapy drugs that could cure cancers. Immunol Rev 222(1):357–368
Marino P, Preatoni A, Cantoni A (1995) Randomized trials of radiotherapy alone versus combined chemotherapy and radiotherapy in stages IIIa and IIIb nonsmall cell lung cancer. A meta-analysis. Cancer 76(4):593–601
McAsey M, Mou L, Han W (2012) Convergence of the forward–backward sweep method in optimal control. Comput Optim Appl 53(1):207–226
Meyer GH (1973) Initial value methods for boundary value problems. Academic Press, New York
Mukhopadhyay B, Bhattacharyya R (2009) A nonlinear mathematical model of virus-tumor–immune system interaction: deterministic and stochastic analysis. Stoch Anal Appl 27(2):409–429
Naidu DS (2002) Optim Control Syst, vol 2. CRC Press, Boca Raton
Nazari M, Ghaffari A (2015) The effect of finite duration inputs on the dynamics of a system: proposing a new approach for cancer treatment. Int J Biomath 8(03):1550036
Nazari M, Ghaffari A, Arab F (2015) Finite duration treatment of cancer by using vaccine therapy and optimal chemotherapy: state-dependent Riccati equation control and extended Kalman filter. J Biol Syst 23(01):1–29
Peng S (1990) A general stochastic maximum principle for optimal control problems. SIAM J Control Optim 28(4):966–979
Peng S, Wu Z (1999) Fully coupled forward–backward stochastic differential equations and applications to optimal control. SIAM J Control Optim 37(3):825–843
Pontryagin LS (1987) Mathematical theory of optimal processes. CRC Press, Boca Raton
Raj A, Van Oudenaarden A (2009) Single-molecule approaches to stochastic gene expression. Annu Rev Biophys 38:255270
Reid WT (1972) Riccati differential equations. Mathematics in science and engineering, vol 86. Academic Press, Cambridge
Ricciardi LM (1977) Diffusion processes and related topics in biology. Springer, Berlin
Rosenberg SA (2008) Overcoming obstacles to the effective immunotherapy of human cancer. Proc Natl Acad Sci 105(35):12643–12644
Rosenberg SA, Restifo NP, Yang JC, Morgan RA, Dudley ME (2008) Adoptive cell transfer: a clinical path to effective cancer immunotherapy. Nat Rev Cancer 8(4):299–308
Rosenberg SA, Yang JC, Restifo NP (2004) Cancer immunotherapy: moving beyond current vaccines. Nat Med 10(9):909–915
Rosenberg SA, Restifo NP (2015) Adoptive cell transfer as personalized immunotherapy for human cancer. Science 348(6230):62–68
Rosenberg SA, Spiess P, Lafreniere R (1986) A new approach to the adoptive immunotherapy of cancer with tumor-infiltrating lymphocytes. Science 233(4770):1318–1321
Rumelin W (1982) Numerical treatment of stochastic differential equations. SIAM J Numer Anal 19(3):604–613
Saadi S, Elmouki I, Hamdache A (2015) Impulsive control dosing BCG immunotherapy for non-muscle invasive bladder cancer. Int J Dyn Control 3(3):313–323
Sahami F, Salamci MU (2015) Decentralized model reference adaptive control design for nonlinear systems; state dependent Riccati equation approach. In: In Carpathian Control Conference (ICCC), 2015 16th international. IEEE, pp 437–442
Samanta GP, Aiza RG, Sharma S (2015) Analysis of a mathematical model of periodically pulsed chemotherapy treatment. Int J Dyn Control. doi:10.1007/s40435-015-0204-z
Sauvage F, Pontier D (2005) Intérêts des modèles déterministes et stochastiques en épidémiologie des maladies infectieuses: Exemple du Hantavirus Puumala. Epidémiologie et Santé Animale 47:63–82
Shaffer DR, Cruz CRY, Rooney CM (2013) Adoptive T cell transfer. In cancer immunotherapy. Springer, New York, pp 47–70
Shindo Y, Hazama S, Maeda Y, Matsui H, Iida M, Suzuki N, Oka M (2014) Adoptive immunotherapy with MUC1-mRNA transfected dendritic cells and cytotoxic lymphocytes plus gemcitabine for unresectable pancreatic cancer. J Transl Med 12:175
Siddiqui I, Mantovani A, Allavena P (2015) Adoptive T-cell therapy: optimizing chemokine receptor-mediated homing of T cells in cancer immunotherapy. In cancer immunology. Springer, Berlin, pp 263–282
Starkov KE, Coria LN (2013) Global dynamics of the KirschnerPanetta model for the tumor immunotherapy. Nonlinear Anal Real World Appl 14(3):1425–1433
Starkov KE, Krishchenko AP (2014) On the global dynamics of one cancer tumour growth model. Commun Nonlinear Sci Numer Simul 19(5):1486–1495
Stefanovic S, Schuetz F, Sohn C, Beckhove P, Domschke C (2014) Adoptive immunotherapy of metastatic breast cancer: present and future. Cancer Metastasis Rev 33(1):309–320
Stengel RF, Ghigliazza RM, Kulkarni NV (2002) Optimal enhancement of immune response. Bioinformatics 18(9):1227–1235
Stengel RF (1994) Optimal control and estimation. Dover Publications, Mineola
Trelat E (2005) Controle optimal: theorie et applications. Vuibert, Paris
Trotter MV, Krishna-Kumar S, Tuljapurkar S (2013) Beyond the mean: sensitivities of the variance of population growth. Methods Ecol Evol 4(3):290–298
Uzzo RG, Novick AC (2001) Nephron sparing surgery for renal tumors: indications, techniques and outcomes. J Urology 166(1):6–18
Whitmore WF (1956) Hormone therapy in prostatic cancer. Am J Med 21(5):697–713
Xiong J (2008) An introduction to stochastic filtering theory. Oxford University Press, Oxford
Xue D, Chen Y (2008) Solving applied mathematical problems with MATLAB. CRC Press, Boca Raton
Yong J, Zhou XY (1999) Stochastic controls: hamiltonian systems and HJB equations, stochastic modelling and applied probability, vol 43. Springer, New York
Yong J (2002) Stochastic optimal control and forward–backward stochastic differential equations. Comput Appl Math 21:369–403
Zhang J (2004) A numerical scheme for BSDEs. Ann Appl Probab 14(1):459–488
Zill D, Wright W (2012) Differential equations with boundary-value problems. Cengage Learning, Boston
Zouhri S, Saadi S, Elmouki I, Hamdache A, Rachik M (2013) Mixed immunotherapy and chemotherapy of tumors: optimal control approach. IJCSI Int J Comput Sci Issues 10(4):1