A stochastic meta-frontier approach for analyzing productivity in the English and Welsh water and sewerage companies

Decision Analytics Journal - Tập 6 - Trang 100185 - 2023
María Molinos-Senante1,2,3, Alexandros Maziotis1, Ramon Sala-Garrido4, Manuel Mocholi Arce4
1Departamento de Ingeniería Hidráulica y Ambiental, Pontificia Universidad Católica de Chile, Santiago, Chile
2Centro de Desarrollo Urbano Sustentable CONICYT/FONDAP/15110020, Santiago, Chile
3Institute of Sustainable Processes, University of Valladolid, C/ Dr. Mergelina, s/n, 47011 Valladolid, Spain
4Departamento de Matemáticas para la Economía y la Empresa, Universidad de Valencia, Avd. Tarongers S/N, Valencia, Spain

Tài liệu tham khảo

United Nations, 2010 United Nation, 2015 Berg, 2011, Quantitative studies of water and sanitation utilities: a benchmarking literature survey, Water Policy, 13, 591, 10.2166/wp.2011.041 Marques, 2010 Walker, 2019, Economic and environmental efficiency of UK and Ireland water companies: Influence of exogenous factors and rurality, J. Environ. Manag., 241, 363, 10.1016/j.jenvman.2019.03.093 Molinos-Senante, 2019, Cost efficiency of English and Welsh water companies: a meta-stochastic frontier analysis, Water Resour. Manag., 33, 3041, 10.1007/s11269-019-02287-8 Molinos-Senante, 2022, An investigation of productivity, profitability, and regulation in the Chilean water industry using stochastic frontier analysis, Decis. Anal. J., 4 de Souza Pereira, 2022, Sanitation and water services: Who is the most efficient provider public or private? Evidences for Brazil, Socio-Econ. Plan. Sci., 79 Saal, 2006, Assessing the performance of water operations in the English and Welsh water industry: a lesson in the implications of inappropriately assuming a common frontier Tiedemann, 2011, Assessing the performance of German Bundesliga football players: A non-parametric metafrontier approach, CEJOR Cent. Eur. J. Oper. Res., 19, 571, 10.1007/s10100-010-0146-7 Hayami, 1969, Sources of agricultural productivity gap among selected countries, Am. J. Agric. Econ., 51, 564, 10.2307/1237909 Battese, 2004, A metafrontier production function for estimation of technical efficiencies and technology gaps for firms operating under different technologies, J. Prod. Anal., 21, 91, 10.1023/B:PROD.0000012454.06094.29 Walheer, 2023, Meta-frontier and technology switchers: A nonparametric approach, European J. Oper. Res., 305, 463, 10.1016/j.ejor.2022.05.038 Shah, 2022, A cross-country efficiency and productivity evaluation of commercial banks in South Asia: A meta-frontier and Malmquist productivity index approach, PLoS ONE, 17, 10.1371/journal.pone.0265349 Li, 2017, Have regulatory reforms improved the efficiency levels of the Japanese electricity distribution sector? A cost metafrontier-based analysis, Energy Policy, 108, 606, 10.1016/j.enpol.2017.06.032 De Witte, 2009, Capturing the environment, a metafrontier approach to the drinking water sector, Int. Transp. Oper. Res., 16, 257, 10.1111/j.1475-3995.2009.00675.x De Witte, 2010, Incorporating heterogeneity in non-parametric models: a methodological comparison, Int. J. Oper. Res., 9, 188, 10.1504/IJOR.2010.035044 Suárez-Varela, 2017, Ownership and performance in water services revisited: does private management really outperform public?, Water Resour. Manag., 31, 2355, 10.1007/s11269-016-1495-3 Molinos-Senante, 2016, Performance of fully private and concessionary water and sewerage companies: a metafrontier approach, Environ. Sci. Pollut. Res., 23, 11620, 10.1007/s11356-016-6359-0 Sala-Garrido, 2019, Comparing changes in productivity among private water companies integrating quality of service: A metafrontier approach, J. Clean. Prod., 216, 517, 10.1016/j.jclepro.2018.12.034 Portela, 2011, Productivity change in the water industry in England and Wales: Application of the meta-malmquist index, J. Oper. Res. Soc., 62, 2173, 10.1057/jors.2011.17 Molinos-Senante, 2015, Assessing the relative efficiency of water companies in the English and Welsh water industry: a metafrontier approach, Environ. Sci. Pollut. Res., 22, 16987, 10.1007/s11356-015-4804-0 Molinos-Senante, 2017, Assessing the productivity change of water companies in England and Wales: A dynamic metafrontier approach, J. Environ. Manag., 197, 1, 10.1016/j.jenvman.2017.03.023 Epure, 2011, Bank productivity and performance groups: A decomposition approach based upon the Luenberger productivity indicator, European J. Oper. Res., 211, 630, 10.1016/j.ejor.2011.01.041 O’Donnell, 2017, Measuring and analysing productivity change in a metafrontier framework, J. Prod. Anal., 47, 117, 10.1007/s11123-017-0494-6 Huang, 2014, A new approach to estimating the metafrontier production function based on a stochastic frontier framework, J. Prod. Anal., 42, 241, 10.1007/s11123-014-0402-2 Maziotis, 2022, Economies of integration and sources of change in productivity in the Chilean water and sewerage industry: a translog cost function approach, Environ. Sci. Pollut. Res., 29, 8503, 10.1007/s11356-021-15851-w Cao, 2017, China’s industrial total-factor energy productivity growth at sub-industry level: A two-step stochastic metafrontier malmquist index approach, Sustainability, 9 O’Donnell, 2008, Metafrontier frameworks for the study of firm-level efficiencies and technology ratios, Empir. Econ., 34, 231, 10.1007/s00181-007-0119-4 Chen, 2011, A cross-country comparison of productivity growth using the generalised metafrontier Malmquist productivity index: With application to banking industries in Taiwan and China, J. Prod. Anal., 3, 197, 10.1007/s11123-010-0198-7 Battese, 2002, Technology gap, efficiency, and a Stochastic metafrontier function, Int. J. Bus. Econ., 1, 87 Fare, 1994, Productivity growth, technical progress, and efficiency change in industrialized countries, Am. Econ. Rev., 1, 66 Lin, 2013, Technology gap and China’s regional energy efficiency: A parametric metafrontier approach, Energy Econ., 40, 529, 10.1016/j.eneco.2013.08.013 Chen, 2008, Extensions of the metafrontier malmquist productivity index: An empirical study with cross-country macro-data, Taiwan Econ. Rev., 4, 551 Zhang, 2015, A deterministic parametric metafrontier luenberger indicator for measuring environmentally-sensitive productivity growth: A Korean fossil-fuel power case, Energy Econ., 51, 88, 10.1016/j.eneco.2015.06.003 Aigner, 1977, Formulation and estimation of stochastic frontier models, J. Econometrics, 6, 21, 10.1016/0304-4076(77)90052-5 Meeusen, 1977, Efficiency estimation from Cobb–Douglas production functions with composed error, Internat. Econom. Rev., 18, 435, 10.2307/2525757 Saal, 2007, Determining the contribution of technical efficiency and scale change to productivity growth in the privatized English and Welsh water and sewerage industry: 1985–2000, J. Prod. Anal., 28, 127, 10.1007/s11123-007-0040-z Greene, 2005, Fixed and random effects in stochastic frontier models, J. Prod. Anal., 23, 7, 10.1007/s11123-004-8545-1 Nguyen, 2016, Efficiency, innovation and competition: evidence from Vietnam, China and India, Empir. Econom., 51, 1235, 10.1007/s00181-015-1045-5 See, 2015, Exploring and analysing sources of technical efficiency in water supply services: Some evidence from Southeast Asian public water utilities, Water Resour. Econ., 9, 23, 10.1016/j.wre.2014.11.002 Pinto, 2017, Water services performance: do operational environment and quality factors count?, Urban Water J., 14, 773, 10.1080/1573062X.2016.1254254 Cetrulo, 2019, An analytical review of the efficiency of water and sanitation utilities in developing countries, Water Res., 161, 372, 10.1016/j.watres.2019.05.044 Goh, 2021, Twenty years of water utility benchmarking: a bibliometric analysis of emerging interest in water research and collaboration, J. Clean. Prod., 284, 10.1016/j.jclepro.2020.124711 Carvalho, 2011, The influence of the operational environment on the efficiency of water utilities, J. Environ. Manag., 92, 2698, 10.1016/j.jenvman.2011.06.008 De Witte, 2011, Gaming in a benchmarking environment: a non-parametric analysis of benchmarking in the water sector, Water Policy, 14, 45, 10.2166/wp.2011.087 Carvalho, 2012, A meta-regression analysis of benchmarking studies on water utilities market structure, Util. Policy, 21, 40, 10.1016/j.jup.2011.12.005 Marques, 2014, Nonparametric benchmarking of Japanese water utilities: institutional and environmental factors affecting efficiency, J. Water Resour. Plan. Manag., 140, 562, 10.1061/(ASCE)WR.1943-5452.0000366 Guerrini, 2015, The effects of operational and environmental variables on efficiency of Danish water and wastewater utilities, Water, 7, 3263, 10.3390/w7073263 Guerrini, 2018, Economies of scale and density in the Italian water industry: a stochastic frontier approach, Util. Policy, 52, 103, 10.1016/j.jup.2018.04.003 Walker, 2020, Key performance indicators to explain energy & economic efficiency across water utilities, and identifying suitable proxies, J. Environ. Manag., 269, 10.1016/j.jenvman.2020.110810 Walker, 2021, Aligning efficiency benchmarking with sustainable outcomes in the United Kingdom water sector, J. Environ. Manag., 287, 10.1016/j.jenvman.2021.112317 Bottasso, 2009, Price cap regulation and the ratchet effect: A generalised index approach, J. Prod. Anal., 32, 191, 10.1007/s11123-009-0140-z Bottasso, 2009, Scale economies, technology and technical change: Evidence from the english water only sector, Reg. Sci. Urban Econ., 39, 138, 10.1016/j.regsciurbeco.2008.05.017 Villegas, 2019, Impact of environmental variables on the efficiency of water companies in England and Wales: a double-bootstrap approach, Environ. Sci. Pollut. Res., 26, 31014, 10.1007/s11356-019-06238-z Ashton, 2003, Capital utilisation and scale in the English and Welsh water industry, Serv. Ind. J., 23, 137, 10.1080/02642060308565628 Erbetta, 2007, Regulation and efficiency incentives: Evidence from the England and Wales water and sewerage industry, Rev. Netw. Econ., 6, 425, 10.2202/1446-9022.1128