A stochastic basis for microphysics

Foundations of Physics - Tập 9 - Trang 163-191 - 1979
J. C. Aron1
1Institut Henri Poincaré, Paris, France

Tóm tắt

The guiding idea of this work is that classical diffusion theory, being nonrelativistic, should be associated with nonrelativistic quantum mechanics. A study of classical diffusion leads to a generalization which should correspond to the relativistic domain. Actually, with a convenient choice of the basic constants, one sees the relativistic features (Lorentz contraction and covariant diffusion equation) emerge in the generalized process. This leads first to a derivation of the nonrelativistic and relativistic wave equations (and to a model of the Dirac fluid); then to a better understanding of several relativistic aspects of quantum mechanics (spin connection with relativity and link of relativity with nonlocalization). No quantum mechanical forces are postulated: they arise as pseudo-forces in the course of the calculations. The physical significance of the stochastic model is examined and shown to give a pictorial description only in certain ideal situations, but to remove several conceptual difficulties. Remarks are presented on the role of idealization in microphysics.

Tài liệu tham khảo

R. G. Newton and E. P. Wigner,Rev. Mod. Phys. 21, 400 (1949). E. Nelson,Phys. Rev. 150, 1079 (1966). J. C. Aron,Mécanique aléatoire et microphysique (Publications scientifiques de l'Université d'Alger, Mathématiques, Tome X, 1963). W. J. Lehr and J. L. Park,J. Math. Phys. 18, 1235 (1977). J. C. Aron,Prog. Theor. Phys. 33, 726 (1965). J. C. Aron,Prog. Theor. Phys. 35, 147 (1966). J. v. Weyssenhoff,Acta Phys. Polon. 9, 8 (1947). T. Takabayasi,Prog. Theor. Phys. Suppl. 4,1957, 1. J. Kogut and L. Susskind,Phys. Reports 8C(2), 100 (1973). J. C. Aron,Prog. Theor. Phys. 42, 715 (1969). J. von Neumann,Mathematische Grundlagen des Quantum mechanik (Berlin, Springer, 1932), p. 173. L. de Broglie,Une tentative d'interprétation causale et non linéaire de la mécanique quantique (Gauthier-Villars, Paris, 1956), p. 111. F. J. Belinfante,Physica 6, 887 (1939).