A statistical analysis of the global historical volcanic fatalities record
Tóm tắt
A new database of volcanic fatalities is presented and analysed, covering the period 1600 to 2010 AD. Data are from four sources: the Smithsonian Institution, Witham (2005), CRED EM-DAT and Munich RE. The data were combined and formatted, with a weighted average fatality figure used where more than one source reports an event; the former two databases were weighted twice as strongly as the latter two. More fatal incidents are contained within our database than similar previous works; approximately 46% of the fatal incidents are listed in only one of the four sources, and fewer than 10% are in all four. 278,880 fatalities are recorded in the database, resultant from 533 fatal incidents. The fatality count is dominated by a handful of disasters, though the majority of fatal incidents have caused fewer than ten fatalities. Number and empirical probability of fatalities are broadly correlated with VEI, but are more strongly influenced by population density around volcanoes and the occurrence and extent of lahars (mudflows) and pyroclastic density currents, which have caused 50% of fatalities. Indonesia, the Philippines, and the West Indies dominate the spatial distribution of fatalities, and there is some negative correlation between regional development and number of fatalities. With the largest disasters removed, over 90% of fatalities occurred between 5 km and 30 km from volcanoes, though the most devastating eruptions impacted far beyond these distances. A new measure, the Volcano Fatality Index, is defined to explore temporal changes in societal vulnerability to volcanic hazards. The measure incorporates population growth and recording improvements with the fatality data, and shows prima facie evidence that vulnerability to volcanic hazards has fallen during the last two centuries. Results and interpretations are limited in scope by the underlying fatalities data, which are affected by under-recording, uncertainty, and bias. Attempts have been made to estimate the extent of these issues, and to remove their effects where possible. The data analysed here are provided as supplementary material. An updated version of the Smithsonian fatality database fully integrated with this database will be publicly available in the near future and subsequently incorporate new data.
Tài liệu tham khảo
Aspinall W, Auker M, Hincks TK, Mahony S, Nadim F, Pooley J, Sparks RSJ, Syre E: Volcano hazard and exposure in GDRFF priority countries and risk mitigation measures - GFDRR Volcano Risk Study. Bristol: Bristol University Cabot Institute and NGI Norway for the World Bank: NGI Report 20100806; 2011. 3 May 2011 3 May 2011
Blong RJ: Volcanic hazards. Sydney: Academic Press; 1984.
Blong RJ: Assessment of eruption consequences. Kagoshima: Proceedings Kagoshima International Conference on Volcanoes; 1988.
Blong RJ: A review of damage intensity scales. Nat Hazard 2003, 29: 57–76. 10.1023/A:1022960414329
Bulletin of Volcanic Eruptions, Nos. 1 – 33: Volcanological Society of Japan, Tokyo. 1960–1996.
Centre for Research on the Epidemiology of Disasters: EM-DAT: The OFDA/CRED International Disaster Database. Brussels, Belgium: Université Catholique de Louvain; 2010. Available online: http://www.emdat.net Available online:
Chester DK, Degg M, Duncan AM, Guest JE: The increasing exposure of cities to the effects of volcanic eruptions: a global survey. Global Environmental Change Part B: Environmental Hazards 2001, 2: 89–103.
Coles SG, Sparks RSJ: Extreme value methods for modelling historical series of large volcanic magnitudes. In Statistics in Volcanology, vol 1. Edited by: Mader HM, Coles SG, Connor CB, Connor LJ. London: Geological Society of London, Special Publication of IAVCEI; 2006:47–56.
Deligne NI, Coles SG, Sparks RSJ: Recurrence rates of large explosive volcanic eruptions. J Geophys Res 2010, 115: B06203.
Dilley M, Chen RS, Deichmann U, Lerner-Lam AL, Arnold M, Agwe J, Buys P, Kjekstad O, Lyon B, Yetman G: Natural disaster hotspots: a global risk analysis. Washington D.C: The International Bank for Reconstruction and Development, the World Bank, and Columbia University; 2005.
Donovan A, Oppenheimer C, Bravo M: Science at the policy interface: volcano-monitoring technologies and volcanic hazard management. Bull Volcanol 2012, 74: 1005–1022. 10.1007/s00445-012-0581-5
Ewert JW, Harpel GJ: In harm’s way: population and volcanic risk. Geotimes 2004, 49: 14–17.
Ewert JW, Swanson DA: Monitoring volcanoes: techniques and strategies used by the staff of the Cascades Volcano Observatory, 1980 – 1990. USGS Bulletin 1992, 1966: 223.
Furlan C: Extreme value methods for modelling historical series of large volcanic magnitudes. Stat Model 2010, 10: 113–132. 10.1177/1471082X0801000201
Guha-Sapir D, Below R: Collecting data on disasters: easier said than done. Asian Disaster Management News 2006, 12: 9–10.
Hittelman AM, Lockridge PA, Whiteside LS, Lander JF: Interpretive pitfalls in historical hazards data. Nat Hazard 2001, 23: 315–338. 10.1023/A:1011144703109
IAVCEI: Catalog of active volcanoes of the world and solfarata fields. Rome: International Association of Volcanology and Chemistry of the Earth’s Interior (22 volumes); 1951–1975.
Lacroix A: La Montagne Pelée et ses éruptions. Paris: Masson et Cie; 1904.
McEvedy C, Jones R: Atlas of world population history. London: Penguin; 1978.
Newhall CG: Mount St. Helens, master teacher. Science 2000, 288: 1181–1183. 10.1126/science.288.5469.1181
Newhall CG, Punongbayan RS: Fire and Mud: Eruptions and Lahars of Mount Pinatubo, Philippines. Seattle: Philippines Institute of Volcanology and Seismology, Quezon City, Philippines, and University of Washington Press; 1996.
Newhall CG, Self S: The volcanic explosivity index (VEI): an estimate of explosive magnitude for historical eruptions. Journal of Geophysical Research (Oceans and Atmospheres) 1982, 87: 1231–1238. 10.1029/JC087iC02p01231
Peterson DW: Volcanoes: tectonic setting and impact on society. In: Geophysics Study Committee. Active tectonics: impact on society. Washington DC: National Academy Press; 1986.
Population Division, Population Estimates, and Projections Section of the United Nations Department of Economic and Social Affairs: World population prospects: the 2010 revision. 2010. Available online: . Accessed on 1st and 2nd February 2012 http://esa.un.org/unpd/wpp/unpp/panel_population.htm Available online: . Accessed on 1st and 2nd February 2012
Populstat: Population statistics: historical demography of all countries, their divisions, and towns (Populstat). 1996/2006. Available online: . Accessed on 30th and 31st January and 1st February 2012 http://www.populstat.info Available online: . Accessed on 30th and 31st January and 1st February 2012
Siebert L, Simkin T: Volcanoes of the World: an Illustrated Catalog of Holocene Volcanoes and their Eruptions. Smithsonian Institution, Global Volcanism Program Digital Information Series, GVP-3. 2002. Available online: http://www.volcano.si.edu/gvp/world/ Available online:
Siebert L, Simkin T, Kimberly P: Volcanoes of the World. 3rd edition. Berkeley: University of California Press; 2010.
Simkin TA: Terrestrial volcanism in space and time. Annual Review of Earth and Planetary Sciences 1993, 21: 427–452. 10.1146/annurev.ea.21.050193.002235
Simkin TA, Siebert L, Blong R: Volcano fatalities – lessons from the historical record. Science 2001, 291(5502):255. 10.1126/science.291.5502.255
Small C, Naumann T: The global distribution of human population and recent volcanism. Environmental Hazards 2001, 3: 93–109.
Sparks RSJ, Biggs J, Neuberg JW: Monitoring volcanoes. Science 2012, 335: 1310–1311. 10.1126/science.1219485
Surono JP, Pallister J, Boichu M, Buongiorno MF, Budisantoso A, Costa F, Andreastuti S, Prata F, Schneider D, Clarisse L, Humaida H, Sumarti S, Bignami C, Griswold J, Carn S, Oppenheimer C, Lavigne F: The 2010 explosive eruption of Java’s Merapi volcano – a ‘100-year’ event. J Volcanol Geotherm Res 2012, 241–242: 121–135.
Tanguy JC, Ribière C, Scarth A, Tjetjep WS: Victims from volcanic eruptions: a revised database. Bull Volcanol 1998, 60: 137–144. 10.1007/s004450050222
Tilling RI, Lipman PW: Lessons in reducing volcano risk. Nature 1993, 364: 277–279. 10.1038/364277a0
United Nations Development Programme (UNDP): Human development report 2011. New York: United Nations Development Programme; 2011.
United Nations Population Fund (UNFPA): Population dynamics in the LDCs: challenges and opportunities for development and poverty reduction. New York: United Nations Population Fund; 2011.
United Nations Statistics Division: Composition of geographical (continental) regions, geographical sub-regions, and selected economic and other groupings. 2011. Available online: . Accessed on 10th February 2012 http://unstats.un.org/unsd/methods/m49/m49regin.htm#developed Available online: . Accessed on 10th February 2012
Venzke E, Wunderman RW, McClelland L, Simkin T, Luhr JF, Siebert L, Sennert S, Mayberry G: Global Volcanism, 1968 to the Present. Smithsonian Institution Global Volcanism Program Digital Information Series, GVP-4. 2002. Available online: http://www.volcano.si.edu/reports/ Available online:
Witham CS: Volcanic disasters and incidents: a new database. J Volcanol Geotherm Res 2005, 148: 191–233. 10.1016/j.jvolgeores.2005.04.017