A state-of-the-art review of the fabrication and characteristics of titanium and its alloys for biomedical applications

Bio-Design and Manufacturing - Tập 5 - Trang 371-395 - 2021
Masoud Sarraf1,2, Erfan Rezvani Ghomi3, Saeid Alipour2, Seeram Ramakrishna3, Nazatul Liana Sukiman1
1Centre of Advanced Materials, Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, Malaysia
2Department of Materials Science and Engineering, Sharif University of Technology, Tehran, Iran
3Center for Nanotechnology and Sustainability, Department of Mechanical Engineering, National University of Singapore, Singapore, Singapore

Tóm tắt

Commercially pure titanium and titanium alloys have been among the most commonly used materials for biomedical applications since the 1950s. Due to the excellent mechanical tribological properties, corrosion resistance, biocompatibility, and antibacterial properties of titanium, it is getting much attention as a biomaterial for implants. Furthermore, titanium promotes osseointegration without any additional adhesives by physically bonding with the living bone at the implant site. These properties are crucial for producing high-strength metallic alloys for biomedical applications. Titanium alloys are manufactured into the three types of α, β, and α + β. The scientific and clinical understanding of titanium and its potential applications, especially in the biomedical field, are still in the early stages. This review aims to establish a credible platform for the current and future roles of titanium in biomedicine. We first explore the developmental history of titanium. Then, we review the recent advancement of the utility of titanium in diverse biomedical areas, its functional properties, mechanisms of biocompatibility, host tissue responses, and various relevant antimicrobial strategies. Future research will be directed toward advanced manufacturing technologies, such as powder-based additive manufacturing, electron beam melting and laser melting deposition, as well as analyzing the effects of alloying elements on the biocompatibility, corrosion resistance, and mechanical properties of titanium. Moreover, the role of titania nanotubes in regenerative medicine and nanomedicine applications, such as localized drug delivery system, immunomodulatory agents, antibacterial agents, and hemocompatibility, is investigated, and the paper concludes with the future outlook of titanium alloys as biomaterials.

Tài liệu tham khảo

Goncalves AD, Balestri W, Reinwald Y (2020) Biomedical implants for regenerative therapies. Biomaterials. https://doi.org/10.5772/intechopen.91295 Kurtz S, Ong K, Lau E et al (2007) Projections of primary and revision hip and knee arthroplasty in the United States from 2005 to 2030. J Bone Joint Surg Am 89(4):780–785. https://doi.org/10.2106/JBJS.F.00222 Khosravi F, Khorasani SN, Khalili S et al (2020) Development of a highly proliferated bilayer coating on 316L stainless steel implants. Polymers 12(5):1022. https://doi.org/10.3390/polym12051022 Santos G (2017) The importance of metallic materials as biomaterials. Adv Tissue Eng Regen Med Open Access 3(1):300–302 Sarraf M, Zalnezhad E, Bushroa AR et al (2014) Structural and mechanical characterization of Al/Al2O3 nanotube thin film on TiV alloy. Appl Surface Sci 321:511–519. https://doi.org/10.1016/j.apsusc.2014.10.040 Xu WC, Yu F, Yang LH et al (2018) Accelerated corrosion of 316L stainless steel in simulated body fluids in the presence of H2O2 and albumin. Mater Sci Eng C 92:11–19. https://doi.org/10.1016/j.msec.2018.06.023 Yamanaka K, Mori M, Kartika I et al (2019) Effect of multipass thermomechanical processing on the corrosion behaviour of biomedical Co–Cr–Mo alloys. Corrosion Sci 148:178–187. https://doi.org/10.1016/j.corsci.2018.12.009 Biesiekierski A, Munir K, Li YC et al (2020) Material selection for medical devices. Metallic Biomater Process Med Dev Manuf 2020:31–94. https://doi.org/10.1016/B978-0-08-102965-7.00002-3 Su EP, Justin DF, Pratt CR et al (2018) Effects of titanium nanotubes on the osseointegration, cell differentiation, mineralisation and antibacterial properties of orthopaedic implant surfaces. Bone Joint J 100-B(1 Supple A):9–16. https://doi.org/10.1302/0301-620X.100B1.BJJ-2017-0551.R1 Kopova I, Kronek J, Bacakova L et al (2019) A cytotoxicity and wear analysis of trapeziometacarpal total joint replacement implant consisting of DLC-coated Co-Cr-Mo alloy with the use of titanium gradient interlayer. Diamond Related Mater 97:107456. https://doi.org/10.1016/j.diamond.2019.107456 Bothe R (1940) Reaction of bone to multiple metallic implants. Surg Gynecol Obstet 71:598–602 Kroll W (1940) The production of ductile titanium. Trans Electrochem Soc 78(1):35. https://doi.org/10.1149/1.3071290 Leventhal GS (1951) Titanium, a metal for surgery. J Bone Joint Surg Am 33(2):473–474. https://doi.org/10.2106/00004623-195133020-00021 Beder OE, Stevenson JK, Jones TW (1957) A further investigation of the surgical application of titanium metal in dogs. Surgery 41(6):1012–1015 (PMID: 13442870) Martola M, Lindqvist C, Hänninen H et al (2007) Fracture of titanium plates used for mandibular reconstruction following ablative tumor surgery. J Biomed Mater Res B Appl Biomater 80(2):345–352. https://doi.org/10.1002/jbm.b.30603 Van Noort R (1987) Titanium: the implant material of today. J Mater Sci 22(11):3801–3811. https://doi.org/10.1007/BF01133326 Venkatesh B, Chen D, Bhole S (2008) Three-dimensional fractal analysis of fracture surfaces in a titanium alloy for biomedical applications. Scripta Mater 59(4):391–394. https://doi.org/10.1016/j.scriptamat.2008.04.010 Ran J, Jiang FC, Sun XJ et al (2020) Microstructure and mechanical properties of Ti-6Al-4V fabricated by electron beam melting. Curr Comput-Aided Drug Des 10(11):972. https://doi.org/10.3390/cryst10110972 Fu Y, Xiao WL, Wang JS et al (2021) A novel strategy for developing α+β dual-phase titanium alloys with low Young’s modulus and high yield strength. J Mater Sci Technol 76:122–128. https://doi.org/10.1016/j.jmst.2020.11.018 Semlitsch MF, Weber H, Streicher RM et al (1992) Joint replacement components made of hot-forged and surface-treated Ti-6Al-7Nb alloy. Biomaterials 13(11):781–788. https://doi.org/10.1016/0142-9612(92)90018-J Whittenberger JD, Moore TJ (1979) Elevated temperature flow strength, creep resistance and diffusion welding characteristics of Ti-6Al-2Nb-1Ta-0.8 Mo. Metallurgical Trans A 10(11):1597–1605. https://doi.org/10.1007/BF02811691 Hanawa T (2012) Research and development of metals for medical devices based on clinical needs. Sci Technol Adv Mater 13(6):064102. https://doi.org/10.1088/1468-6996/13/6/064102 Maehara K, Doi K, Matsushita T et al (2002) Application of vanadium-free titanium alloys to artificial hip joints. Mater Trans 43(12):2936–2942. https://doi.org/10.2320/matertrans.43.2936 Aguilar C, Arancibia M, López LA et al (2019) Influence of porosity on the elastic modulus of Ti-Zr-Ta-Nb foams with a low Nb content. Metals 9(2):176. https://doi.org/10.3390/met9020176 Wang KK, Gustavson LJ, Dumbleton JH (1996). Microstructure and properties of a new beta titanium alloy, Ti-12Mo-6Zr-2Fe, developed for surgical implants. In: Brown SA, Lemons JE (Eds.), Medical Applications of Titanium and Its Alloys: the Material and Biological Issues, American Sociery for Testing and Materials, USA, p. 76–87. https://doi.org/10.1520/STP16071S Im YD, Lee YK (2020) Effects of Mo concentration on recrystallization texture, deformation mechanism and mechanical properties of Ti–Mo binary alloys. J Alloys Compd 821:153508. https://doi.org/10.1016/j.jallcom.2019.153508 Pellizzari M, Jam A, Tachon M et al (2020) A 3D-printed ultra-low Young’s modulus β-Ti alloy for biomedical applications. Materials 13(12):2792. https://doi.org/10.3390/ma13122792 Koizumi H, Ishii T, Okazaki T et al (2018) Castability and mechanical properties of Ti-15Mo-5Zr-3Al alloy in dental casting. J Oral Sci 60(2):285–292. https://doi.org/10.2334/josnusd.17-0280 Okazaki Y (2001) A new Ti–15Zr–4Nb–4Ta alloy for medical applications. Curr Opin Solid State Mater Sci 5(1):45–53. https://doi.org/10.1016/S1359-0286(00)00025-5 Matsuda Y, Nakamura T, Ido M et al (1997) Femoral component made of Ti-15Mo-5Zr-3Al alloy in total hip arthroplasty. J Orthop Sci 2(3):166–170. https://doi.org/10.1007/BF02492973 Bruschi M, Steinmüller-Nethl D, Goriwoda W et al (2015) Composition and modifications of dental implant surfaces. J Oral Implants 2015:527426. https://doi.org/10.1155/2015/527426 Ida K, Togaya T, Tsutsumi S et al (1982) Effect of magnesia investments in the dental casting of pure titanium or titanium alloys. Dent Mater J 1(1):8–21. https://doi.org/10.4012/dmj.1.8 Marteleur M, Sun F, Gloriant T et al (2012) On the design of new β-metastable titanium alloys with improved work hardening rate thanks to simultaneous TRIP and TWIP effects. Scripta Mater 66(10):749–752. https://doi.org/10.1016/j.scriptamat.2012.01.049 Buehler WJ, Gilfrich JV, Wiley R (1963) Effect of low-temperature phase changes on the mechanical properties of alloys near composition TiNi. J Appl Phys 34(5):1475–1477. https://doi.org/10.1063/1.1729603 Luo Y, Yang L, Tian M (2013) Application of biomedical-grade titanium alloys in trabecular bone and artificial joints. In: Davim P (Ed.), Biomaterials and Medical Tribology. Woodhead Publishing, Elsevier, p. 181–216. https://doi.org/10.1533/9780857092205.181 Xue L, Koul AK, Bibby M et al (1970) A survey of surface treatments to improve the fretting fatigue resistance of Ti-6Al-4V. WIT Trans Eng Sci 8:265–272. https://doi.org/10.2495/SURF950311 Hanawa T (2019) Overview of metals and applications. In Niinomi M (Ed.), Metals for Biomedical Devices, Woodhead Publishing, p.3–24. https://doi.org/10.1533/9781845699246.1.3 Semlitsch M, Staub F, Weber H (1985) Titanium-aluminium-niobium alloy, development for biocompatible, high strength surgical implants - Titan-Aluminium-NIOB-Legierung, entwickelt für körperverträgliche, hochfeste implantate in der chirurgie. Biomed Eng Biomed Technik 30(12):334–339. https://doi.org/10.1515/bmte.1985.30.12.334 Bhambri SK, Shetty RH, Gilbertson LN (1996) Optimization of properties of Ti-15Mo-2.8Nb-3Al-0.2Si & Ti-15Mo-2.8Nb-0.2Si-.260 beta titanium alloys for application in prosthetic implants. In: Brown SA, Lemons JE (Eds.), Medical Applications of Titanium and Its Alloys: the Material and Biological Issues. American Sociery for Testing and Materials, USA, p. 88–95 Niinomi M (1998) Mechanical properties of biomedical titanium alloys. Mater Sci Eng A 243(1–2):231–236. https://doi.org/10.1016/S0921-5093(97)00806-X Elias L, Schneider SG, Schneider S et al (2006) Microstructural and mechanical characterization of biomedical Ti–Nb–Zr (–Ta) alloys. Mater Sci Eng A 432(1–2):108–112. https://doi.org/10.1016/j.msea.2006.06.013 Hao Y, Yang R, Niinomi M et al (2003) Aging response of the Young’s modulus and mechanical properties of Ti-29Nb-13Ta-46 Zr for biomedical applications. Metallurgical Mater Trans A 34(4):1007–1012. https://doi.org/10.1007/s11661-003-0230-x Xu L, Chen YY, Liu ZG et al (2008) The microstructure and properties of Ti–Mo–Nb alloys for biomedical application. J Alloys Compd 453(1–2):320–324. https://doi.org/10.1016/j.jallcom.2006.11.144 Yang R, Hao Y, Li S (2011) Development and application of low-modulus biomedical titanium alloy Ti2448. Biomed Eng Trends 10:225–247. https://doi.org/10.5772/13269 Warburton A, Girdler SJ, Mikhail CM et al (2020) Biomaterials in spinal implants: a review. Neurospine 17(1):101. https://doi.org/10.14245/ns.1938296.148 Tan JH, Cheong CK, Hey HWD (2021) Titanium (Ti) cages may be superior to polyetheretherketone (PEEK) cages in lumbar interbody fusion: a systematic review and meta-analysis of clinical and radiological outcomes of spinal interbody fusions using Ti versus PEEK cages. Europ Spine J 30(5):1285–1295. https://doi.org/10.1007/s00586-021-06748-w Alvarez AG, Evans PL, Dovgalski L et al (2021) Design, additive manufacture and clinical application of a patient-specific titanium implant to anatomically reconstruct a large chest wall defect. Rapid Prototyping J 27(2):1355–2546 Baltatu MS, Tugui CA, Perju MC, et al (2019). Biocompatible titanium alloys used in medical applications. Rev Chim 70(4):1302–1306. https://doi.org/10.37358/RC.19.4.7114 Vijayavenkataraman S, Gopinath A, Lu WF (2020) A new design of 3D-printed orthopedic bone plates with auxetic structures to mitigate stress shielding and improve intra-operative bending. Bio-Des Manuf 3:98–108. https://doi.org/10.1007/s42242-020-00066-8 Shakir DA, Abdul-Ameer FM (2018) Effect of nano-titanium oxide addition on some mechanical properties of silicone elastomers for maxillofacial prostheses. J Taibah Univ Med Sci 13(3):281–290. https://doi.org/10.1016/j.jtumed.2018.02.007 Cevik P, Eraslan O (2017) Effects of the addition of titanium dioxide and silaned silica nanoparticles on the mechanical properties of maxillofacial silicones. J Prosthodontics C 26(7):611–615. https://doi.org/10.1111/jopr.12438 Asserghine A, Filotás D, Németh B et al (2018) Potentiometric scanning electrochemical microscopy for monitoring the pH distribution during the self-healing of passive titanium dioxide layer on titanium dental root implant exposed to physiological buffered (PBS) medium. Electrochem Commun 95:1–4. https://doi.org/10.1016/j.elecom.2018.08.008 Das R, Bhattacharjee C (2019). Titanium-based nanocomposite materials for dental implant systems. In Asiri AM, Inamuddin, Mohammad A (Eds.), Applications of Nanocomposite Materials in Dentistry, Woodhead Publishing, p.271–284. https://doi.org/10.1016/B978-0-12-813742-0.00016-X Niinomi M (2003) Recent research and development in titanium alloys for biomedical applications and healthcare goods. Sci Technol Adv Mater 4(5):445. https://doi.org/10.1016/j.stam.2003.09.002 Herrmann H, Kern JS, Kern T et al (2020) Early and mature biofilm on four different dental implant materials: an in vivo human study. Clin Oral Implants Res 31(11):1094–1104. https://doi.org/10.1111/clr.13656 Wu C, Wang Q, Mao T et al (2019) Relationship between lattice defects and phase transformation in hydrogenation/dehydrogenation process of the V60Ti25Cr3Fe12 alloy. Int J Hydrogen Energy 44(18):9368–9377. https://doi.org/10.1016/j.ijhydene.2019.02.097 Shahryari L, JavidSharifi B, Dabaghmanesh M (2019) A case study of performance improvement of femur prosthesis. J Struct Eng Geo-Techn 10(2):57–75 Kumari N, Kumar K (2017). Mechanisms and materials of orthotic calipers for polio infected patients—a review. Proc 2nd International Conference for Convergence in Technology (I2CT), p.7–9. https://doi.org/10.1109/I2CT.2017.8226086 Zhu Y, Liu DD, Wang XL et al (2019) Polydopamine-mediated covalent functionalization of collagen on a titanium alloy to promote biocompatibility with soft tissues. J Mater Chem B 7(12):2019–2031. https://doi.org/10.1039/c8tb03379j Hol MK, Cremers CWRJ, Coppens-Schellekens W et al (2005) The BAHA softband: a new treatment for young children with bilateral congenital aural atresia. Int J Pediatr Otorhinolaryngol 69(7):973–980. https://doi.org/10.1016/j.ijporl.2005.02.010 Ferreira CC, Ricci VP, Sousa LL et al (2017) Improvement of titanium corrosion resistance by coating with poly-caprolactone and poly-caprolactone/titanium dioxide: potential application in heart valves. Mater Res 20:126–133. https://doi.org/10.1590/1980-5373-MR-2017-0425 Aikawa Y, Kataoka Y, Kanaya T et al (2018) Procedural challenge of coronary catheterization for ST-segment elevation myocardial infarction in patient who underwent transcatheter aortic valve replacement using the CoreValveTM. Cardiovasc Diagn Ther 8(2):190–195. https://doi.org/10.21037/cdt.2018.04.02 King MW, Bambharoliya T, Ramakrishna H et al (2020) Evolution of angioplasty devices. In Coronary Artery Disease and the Evolution of Angioplasty Devices, Springer, New York Meininghaus DG, Kruells-Muench J, Peltroche-Llacsahuanga H (2020) First-in-man implantation of a gold-coated biventricular defibrillator: difficult differential diagnosis of metal hypersensitivity reaction vs chronic device infection. HeartRhythm Case Rep 6(6):304–307. https://doi.org/10.1016/j.hrcr.2020.02.004 Kashin OA, Krukovskii KV, Lotkov AI (2018). Opportunities and prospects for the use of porous silicon to create a polymer-free drug coating on intravascular stents. AIP Conf Proc 2051(1):020119–020119–4. Suzuki T, Tokuda Y, Kobayashi H (2017) The development of yellow nail syndrome after the implantation of a permanent cardiac pacemaker. Intern Med 56(19):2667–2669. https://doi.org/10.2169/internalmedicine.8769-16 Olin C (2001) Titanium in cardiac and cardiovascular applications. In: Brunette DM, Tengvall P, Textor M et al (Eds.), Titanium in Medicine, Springer, p.889–907. https://doi.org/10.1007/978-3-642-56486-4_26 Martov AG, Plekhanova OA, Ergakov DV et al (2020) Thermoexpandable urethral nickel–titanium stent memokath for managing urethral bulbar stricture after failed urethroplasty. J Endourol Case Rep 6(3):147–149. https://doi.org/10.1089/cren.2019.0146 Froes F, Qian M (2018) Titanium in medical and dental applications. Woodhead Publishing Froes FS (2018). Titanium for medical and dental applications—an introduction. In Froes FH, Qian M (Eds.), Titanium in Medical and Dental Applications, Woodhead Publishing, p.3–21. https://doi.org/10.1016/B978-0-12-812456-7.00001-9 Abecassis IJ, Sen RD, Ellenbogen RG et al (2021) Developing microsurgical milestones for psychomotor skills in neurological surgery residents as an adjunct to operative training: the home microsurgery laboratory. J Neurosurg 135(1):318–326. https://doi.org/10.3171/2020.5.JNS201590 Glenn CA, Baker CM, Burks JD et al (2018) Dural closure in confined spaces of the skull base with nonpenetrating titanium clips. Operative Neurosurg 14(4):375–385. https://doi.org/10.1093/ons/opx140 Gunawarman B, Niinomi M, Akahori T et al (2005) Mechanical properties and microstructures of low cost β titanium alloys for healthcare applications. Mater Sci Eng C 25(3):304–311. https://doi.org/10.1016/j.msec.2004.12.015 Hong SH, Hwang YJ, Park SW et al (2019) Low-cost beta titanium cast alloys with good tensile properties developed with addition of commercial material. J Alloys Compd 793:271–276. https://doi.org/10.1016/j.jallcom.2019.04.200 Abdalla AO, Amrin A, Muhammad S et al (2017) Iron as a promising alloying element for the cost reduction of titanium alloys: a review. Appl Mech Mater 864:147–153. https://doi.org/10.4028/www.scientific.net/AMM.864.147 Khorasani AM, Goldberg M, Doeven EH et al (2015) Titanium in biomedical applications—properties and fabrication: a review. J Biomater Tissue Eng 5(8):593–619. https://doi.org/10.1166/jbt.2015.1361 Stepanovskaa J, Matejka R, Rosina J et al (2019) Treatments for enhancing the biocompatibility of titanium implants: a review. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 164(1):23–33. https://doi.org/10.5507/bp.2019.062 Khodaei M, Kelishadi SH (2018) The effect of different oxidizing ions on hydrogen peroxide treatment of titanium dental implant. Surface Coatings Technol 353:158–162. https://doi.org/10.1016/j.surfcoat.2018.08.037 Huang J, Chen HZ, Pan W et al (2020) Effect of nitrogen on the microstructures and mechanical behavior of Ti-6Al-4V alloy additively manufactured via tungsten inert gas welding. Mater Today Commun 24:101171. https://doi.org/10.1016/j.mtcomm.2020.101171 Baig MN, Khan FN, Junaid M (2007) Comparison of microstructure, mechanical properties, and residual stresses in tungsten inert gas, laser, and electron beam welding of Ti–5Al–2.5 Sn titanium alloy. Proc Inst Mech Eng Part L J Mater Des Appl 233(7):1336–1351 Paranthaman V, Dhinakaran V, Swapna Sai M et al (2021) A systematic review of fatigue behaviour of laser welding titanium alloys. Mater Today Proc 39(1):520–523. https://doi.org/10.1016/j.matpr.2020.08.249 Kumar SR, Kulkarni SK (2017) Analysis of hard machining of titanium alloy by Taguchi method. Mater Today Proc 4(10):10729–10738. https://doi.org/10.1016/j.matpr.2017.08.020 Sadeghpour S, Abbasi SM, Morakabati M et al (2018) A new multi-element beta titanium alloy with a high yield strength exhibiting transformation and twinning induced plasticity effects. Scripta Mater 145:104–108. https://doi.org/10.1016/j.scriptamat.2017.10.017 Hao X, Dong HG, Xia YQ et al (2019) Microstructure and mechanical properties of laser welded TC4 titanium alloy/304 stainless steel joint with (CoCrFeNi)100−xCux high-entropy alloy interlayer. J Alloys Compd 803:649–657. https://doi.org/10.1016/j.jallcom.2019.06.225 Al-Murshdy JMS, Ghayyib BJ (2019) Effect of heat treatment on properties of titanium biomedical alloy. J Univ Babylon Eng Sci 27(1):232–246 Koizumi H, Takeuchi Y, Imai H et al (2019) Application of titanium and titanium alloys to fixed dental prostheses. J Prosthodont Res 63(3):266–270. https://doi.org/10.1016/j.jpor.2019.04.011 Łęcka K, Gąsiorek J, Mazur-Nowacka A et al (2019) Adhesion and corrosion resistance of laser-oxidized titanium in potential biomedical application. Surface Coatings Technol 366:179–189. https://doi.org/10.1016/j.surfcoat.2019.03.032 Sarraf M, Sukiman NL, Nasiri-Tabrizi B et al (2019) In vitro bioactivity and corrosion resistance enhancement of Ti-6Al-4V by highly ordered TiO2 nanotube arrays. J Aust Ceramic Soc 55(1):187–200. https://doi.org/10.1007/s41779-018-0224-1 Cora ÖN, Koç M (2019) Micromanufacturing. Mod Manuf Process 7:149–184. https://doi.org/10.1002/9781119120384.ch7 Verma RP (2020) Titanium based biomaterial for bone implants: a mini review. Mater Today Proc 26:3148–3151. https://doi.org/10.1016/j.matpr.2020.02.649 Rafieerad A, Bushroa AR, Zalnezhad E et al (2015) Microstructural development and corrosion behavior of self-organized TiO2 nanotubes coated on Ti–6Al–7Nb. Ceramics Int 41(9):10844–10855. https://doi.org/10.1016/j.ceramint.2015.05.025 Gong D, Wang HL, Obbard EG et al (2020) Tuning thermal expansion by a continuing atomic rearrangement mechanism in a multifunctional titanium alloy. J Mater Sci Technol 80:234–243. https://doi.org/10.1016/j.jmst.2020.11.053 Heary RF, Parvathreddy N, Sampath S et al (2017). Elastic modulus in the selection of interbody implants. J Spine Surg 3(2):163–167. https://doi.org/10.21037/jss.2017.05.01 Suzuki G, Hirota M, Hoshi N (2019) Effect of surface treatment of multi-directionally forged (MDF) titanium implant on bone response. Metals 9(2):230. https://doi.org/10.3390/met9020230 Fousova M, Vojtech D, Jablonska E et al (2017) Novel approach in the use of plasma spray: preparation of bulk titanium for bone augmentations. Materials 10(9):987. https://doi.org/10.3390/ma10090987 Kholgh Eshkalak S, Rezvani Ghomi E, Dai YQ et al (2020) The role of three-dimensional printing in healthcare and medicine. Mater Des 194:108940. https://doi.org/10.1016/j.matdes.2020.108940 Niinomi M, Liu Y, Nakai M et al (2016) Biomedical titanium alloys with Young’s moduli close to that of cortical bone. Regenerative biomaterials 3(3):173–185. https://doi.org/10.1093/rb/rbw016 O’Brien T, Weisman DS, Ronchetti P et al (2004) Flexible titanium nailing for the treatment of the unstable pediatric tibial fracture. J Pediatr Orthop 24(6):601–609. https://doi.org/10.1097/00004694-200411000-00001 Niinomi M, Nakai M, Hieda J (2012) Development of new metallic alloys for biomedical applications. Acta Biomater 8(11):3888–3903. https://doi.org/10.1016/j.actbio.2012.06.037 Niinomi M (2011) Low modulus titanium alloys for inhibiting bone atrophy. Biomater Sci Eng. https://doi.org/10.5772/24549 Kondoh K, Umeda J, Soba R, et al (2018). Advanced TiNi shape memory alloy stents fabricated by a powder metallurgy route. In Froes FH, Qian M (Eds.), Titanium in Medical and Dental Applications, Woodhead Publishing, p.583–590. https://doi.org/10.1016/B978-0-12-812456-7.00027-5 Plaine AH, da Silva MR, Bolfarini C (2019). Microstructure and elastic deformation behavior of β-type Ti-29Nb-13Ta-4.6Zr with promising mechanical properties for stent applications. J Mater Res Technol 8(5):3852–3858. https://doi.org/10.1016/j.jmrt.2019.06.047 Li P, Ma XD, Tong T et al (2019) Microstructural and mechanical properties of β-type Ti–Nb–Sn biomedical alloys with low elastic modulus. Metals 9(6):712. https://doi.org/10.1016/j.jallcom.2019.152412 Kim HY, Ohmatsu Y, Kim JI et al (2004) Mechanical properties and shape memory behavior of Ti-Mo-Ga alloys. Mater Trans 45(4):1090–1095. https://doi.org/10.2320/matertrans.45.1090 Miyazaki S, Kim HY, Hosoda H (2006) Development and characterization of Ni-free Ti-base shape memory and superelastic alloys. Mater Sci Eng A 438:18–24. https://doi.org/10.1016/j.msea.2006.02.054 Shinohara Y, Matsumoto Y, Tahara M et al (2018) Development of <001>-fiber texture in cold-groove-rolled Ti-Mo-Al-Zr biomedical alloy. Materialia 1:52–61. https://doi.org/10.1016/j.mtla.2018.07.008 Maeshima T, Nishida M (2004) Shape memory and mechanical properties of biomedical Ti-Sc-Mo alloys. Mater Trans 45(4):1101–1105. https://doi.org/10.2320/MATERTRANS.45.1101 Li B, Xie R, Lu X (2020) Microstructure, mechanical property and corrosion behavior of porous Ti–Ta–Nb–Zr. Bioactive Mater 5(3):564–568. https://doi.org/10.1016/j.bioactmat.2020.04.014 Dorozhkin SV (2017) Calcium orthophosphate coatings and other deposits. Front Nanobiomed Res 3:1–84. https://doi.org/10.1186/2194-0517-1-1 Gallinetti S, Kihlstrom Burenstam Linder L, Åberg J et al (2021) Titanium reinforced calcium phosphate improves bone formation and osteointegration in ovine calvaria defects: a comparative 52-weeks study. Biomed Mater 16(3):035031. https://doi.org/10.1088/1748-605X/abca12 Domínguez-Trujillo C, Peón E, Chicardi E et al (2018) Sol-gel deposition of hydroxyapatite coatings on porous titanium for biomedical applications. Surface Coatings Technol 333:158–162. https://doi.org/10.1016/j.surfcoat.2017.10.079 Hu C, Aindow M, Wei M (2017) Focused ion beam sectioning studies of biomimetic hydroxyapatite coatings on Ti-6Al-4V substrates. Surface Coatings Technol 313:255–262. https://doi.org/10.1016/j.surfcoat.2017.01.103 Ke D, Vu AA, Bandyopadhyay A (2019) Compositionally graded doped hydroxyapatite coating on titanium using laser and plasma spray deposition for bone implants. Acta Biomater 84:414–423. https://doi.org/10.1016/j.actbio.2018.11.041 Cao J, Lian R, Jiang XH (2020) Magnesium and fluoride doped hydroxyapatite coatings grown by pulsed laser deposition for promoting titanium implant cytocompatibility. Appl Surface Sci 515:146069. https://doi.org/10.1016/j.apsusc.2020.146069 Ambrogio G, Palumbo G, Sgambitterra E et al (2018) Experimental investigation of the mechanical performances of titanium cranial prostheses manufactured by super plastic forming and single-point incremental forming. Int J Adv Manuf Technol 98(5):1489–1503. https://doi.org/10.1007/s00170-018-2338-6 Alagarsamy K, Vishwakarma V, Kaliaraj GS (2019) Synthesis and characterization of bioactive composite coating on titanium by PVD for biomedical application. IOP Conf Ser Mater Sci Eng 561:012027. https://doi.org/10.1088/1757-899X/561/1/012027 Won S, Huh YH, Cho LR et al (2017) Cellular response of human bone marrow derived mesenchymal stem cells to titanium surfaces implanted with calcium and magnesium ions. Tissue Eng Regener Med 14(2):123–131. https://doi.org/10.1007/s13770-017-0028-3 Karimi N, Kharaziha M, Raeissi K (2019) Electrophoretic deposition of chitosan reinforced graphene oxide-hydroxyapatite on the anodized titanium to improve biological and electrochemical characteristics. Mater Sci Eng C 98:140–152. https://doi.org/10.1016/j.msec.2018.12.136 Lu M, Chen H, Yuan B et al (2020) Electrochemical deposition of nanostructured hydroxyapatite coating on titanium with enhanced early stage osteogenic activity and osseointegration. Int J Nanomed 15:6605–6618. https://doi.org/10.2147/IJN.S268372 Kokubo T, Yamaguchi S (2016) Novel bioactive materials developed by simulated body fluid evaluation: surface-modified ti metal and its alloys. Acta Biomater 44:16–30. https://doi.org/10.1016/j.actbio.2016.08.013 Hanawa T (2019) Titanium–tissue interface reaction and its control with surface treatment. Front Bioeng Biotechnol 7:170. https://doi.org/10.3389/fbioe.2019.00170 Surender L, Rekha RK, Veerendra NRP et al (2011) Surface characteristics of titanium dental implants for rapid osseointegration. Indian J Dent Adv 3(3):602–612 Le Guéhennec L, Soueidan A, Layrolle P et al (2007) Surface treatments of titanium dental implants for rapid osseointegration. Dent mater 23(7):844–854. https://doi.org/10.1016/j.dental.2006.06.025 Yu M, Gong JX, Zhou Y et al (2017) Surface hydroxyl groups regulate the osteogenic differentiation of mesenchymal stem cells on titanium and tantalum metals. J Mater Chem B 5(21):3955–3963. https://doi.org/10.1039/c7tb00111h Paradowska E, Arkusz K, Pijanowska DG (2019) The influence of the parameters of a gold nanoparticle deposition method on titanium dioxide nanotubes, their electrochemical response, and protein adsorption. Biosensors 9(4):138. https://doi.org/10.3390/bios9040138 Jia E, Zhao X, Lin Y et al (2020) Protein adsorption on titanium substrates and its effects on platelet adhesion. Appl Surface Sci 529:146986. https://doi.org/10.1016/j.apsusc.2020.146986 Hiji A, Hanawa T, Shimabukuro M et al (2021) Initial formation kinetics of calcium phosphate on titanium in Hanks’ solution characterized using XPS. Surface Interf Anal 53(2):185–193. https://doi.org/10.1002/sia.6900 Sarraf M, Dabbagh A, Abdul Razak B et al (2018) Highly-ordered TiO2 nanotubes decorated with Ag2O nanoparticles for improved biofunctionality of Ti6Al4V. Surface Coatings Technol 349:1008–1017. https://doi.org/10.1016/j.surfcoat.2018.06.054 Souza JC, Sordi MB, Kanazawa M et al (2019) Nano-scale modification of titanium implant surfaces to enhance osseointegration. Acta Biomater 94:112–131. https://doi.org/10.1016/j.actbio.2019.05.045 Rezvani Ghomi E, Eshkalak Saeideh K, Singh S et al (2021) Fused filament printing of specialized biomedical devices: a state-of-the art review of technological feasibilities with PEEK. Rapid Prototyping J 27(3):592–616. https://doi.org/10.1108/rpj-06-2020-0139 Stacchi C, Barlone L, Rapani A et al (2020) Modified orthodontic bone stretching for ankylosed tooth repositioning: a case report. Open Dent J 14(1):235–239. https://doi.org/10.2174/1874210602014010235 Wang C, Wang SN, Yang YY et al (2018) Bioinspired, biocompatible and peptide-decorated silk fibroin coatings for enhanced osteogenesis of bioinert implant. J Biomater Sci Polymer Ed 29(13):1595–1611. https://doi.org/10.1080/09205063.2018.1477316 Romanov DA, Sosnin KV, Filyakov AD et al (2021) The effect of bioinert electroexplosive coatings on stress distribution near the dental implant-bone interface. Mater Res Expr 8(1):015016. https://doi.org/10.1088/2053-1591/abd664 Siddiqi A, Payne AGT, De Silva RK et al (2011) Titanium allergy: could it affect dental implant integration? Clin Oral Implants Res 22(7):673–680. https://doi.org/10.1111/j.1600-0501.2010.02081.x Wang X, Lu L, Feng Y et al (2019) Macrophage polarization in aseptic bone resorption around dental implants induced by Ti particles in a murine model. J Periodont Res 54(4):329–338. https://doi.org/10.1111/jre.12633 Civantos A, Domínguez C, Pino RJ et al (2019) Designing bioactive porous titanium interfaces to balance mechanical properties and in vitro cells behavior towards increased osseointegration. Surface Coatings Technol 368:162–174. https://doi.org/10.1016/j.surfcoat.2019.03.001 Wang Q, Zhou P, Liu SF et al (2020) Multi-scale surface treatments of titanium implants for rapid osseointegration: a review. Nanomaterials 10(6):1244. https://doi.org/10.3390/nano10061244 Taniyama T, Saruta J, Rezaei NM et al (2020) UV-photofunctionalization of titanium promotes mechanical anchorage in a rat osteoporosis model. Int J Mol Sci 21(4):1235. https://doi.org/10.3390/ijms21041235 Zhang H, Komasa S, Mashimo C et al (2017) Effect of ultraviolet treatment on bacterial attachment and osteogenic activity to alkali-treated titanium with nanonetwork structures. Int J Nanomed 12:4633. https://doi.org/10.2147/IJN.S136273 Itabashi T, Narita K, Ono A et al (2017) Bactericidal and antimicrobial effects of pure titanium and titanium alloy treated with short-term, low-energy UV irradiation. Bone Joint Res 6(2):108–112. https://doi.org/10.1302/2046-3758.62.2000619 Javadhesari SM, Alipour S, Akbarpour M (2020) Biocompatibility, osseointegration, antibacterial and mechanical properties of nanocrystalline Ti-Cu alloy as a new orthopedic material. Colloids Surfaces B Biointerf 189:110889 Bono N, Ponti F, Punta C et al (2021) Effect of UV irradiation and TiO2-photocatalysis on airborne bacteria and viruses: an overview. Materials 14(5):1075. https://doi.org/10.3390/ma14051075 Guo C, Wang K, Hou S et al (2017) H2O2 and/or TiO2 photocatalysis under UV irradiation for the removal of antibiotic resistant bacteria and their antibiotic resistance genes. J Hazardous Mater 323:710–718. https://doi.org/10.1016/j.jhazmat.2016.10.041 Chouirfa H, Bouloussa H, Migonney V et al (2019) Review of titanium surface modification techniques and coatings for antibacterial applications. Acta Biomater 83:37–54. https://doi.org/10.1016/j.actbio.2018.10.036 Sarraf M, Dabbagh A, Razak BA et al (2018) Silver oxide nanoparticles-decorated tantala nanotubes for enhanced antibacterial activity and osseointegration of Ti6Al4V. Mater Des 154:28–40. https://doi.org/10.1016/j.matdes.2018.05.025 Wang Y, Zhang MJ, Li KM et al (2021) Study on the surface properties and biocompatibility of nanosecond laser patterned titanium alloy. Optics Laser Technol 139:106987. https://doi.org/10.1016/j.optlastec.2021.106987 Taherian M, Rezazadeh M, Taji A (2021) Optimum surface roughness for titanium-coated PEEK produced by electron beam PVD for orthopedic applications. Mater Technol. https://doi.org/10.1080/10667857.2020.1868209 Hwang YJ, Choi YS, Hwang YH et al (2021) Biocompatibility and biological corrosion resistance of Ti–39Nb–6Zr+045Al implant alloy. J Funct Biomater 12(1):2. https://doi.org/10.3390/jfb12010002 Fathyunes L, Khalil-Allaf J, Moosavifa M (2019) Development of graphene oxide/calcium phosphate coating by pulse electrodeposition on anodized titanium: biocorrosion and mechanical behavior. J Mech Behav Biomed Mater 90:575–586. https://doi.org/10.1016/j.jmbbm.2018.11.011 Vogel D, Dempwolf H, Baumann A et al (2017) Characterization of thick titanium plasma spray coatings on PEEK materials used for medical implants and the influence on the mechanical properties. J Mech Behav Biomed Mater B 77:600–608. https://doi.org/10.1016/j.jmbbm.2017.09.027 Lukaszewska-Kuska M, Wirstlein P, Majchrowski R et al (2018) Osteoblastic cell behaviour on modified titanium surfaces. Micron 105:55–63. https://doi.org/10.1016/j.micron.2017.11.010 Guillem-Marti J, Boix Lemonche G, Gugutkov D et al (2018) Recombinant fibronectin fragment III8-10/polylactic acid hybrid nanofibers enhance the bioactivity of titanium surface. Nanomedicine 13(8):899–912. https://doi.org/10.2217/nnm-2017-0342 Sarraf M, Razak BA, Nasiri-Tabrizi B et al (2017) Nanomechanical properties, wear resistance and in-vitro characterization of Ta2O5 nanotubes coating on biomedical grade Ti–6Al–4V. J Mech Behav Biomed Mater 66:159–171. https://doi.org/10.1016/j.jmbbm.2016.11.012 Zhou L, Pan M, Zhang ZH et al (2021) Enhancing osseointegration of TC4 alloy by surficial activation through biomineralization method. Front Bioeng Biotechnol 9:120. https://doi.org/10.3389/fbioe.2021.639835 Sarraf M, Razak A, Crum R et al (2017) Adhesion measurement of highly-ordered TiO2 nanotubes on Ti-6Al-4V alloy. Proc Appl Ceramics 11(4):311–321. https://doi.org/10.2298/PAC1704311S Sarraf M, Zalnezhad E, Bushroa AR et al (2015) Effect of microstructural evolution on wettability and tribological behavior of TiO2 nanotubular arrays coated on Ti–6Al–4V. Ceramics Int 41(6):7952–7962. https://doi.org/10.1016/j.ceramint.2015.02.136 Praharaj R, Mishra S, Rautray TR (2020) The structural and bioactive behaviour of strontium-doped titanium dioxide nanorods. J Korean Ceramic Soc 57(3):271–280. https://doi.org/10.1007/s43207-020-00027-y Zalnezhad E, Maleki E, Banihashemian SM et al (2016) Wettability, structural and optical properties investigation of TiO2 nanotubular arrays. Mater Res Bull 78:179–185. https://doi.org/10.1016/j.materresbull.2016.01.035 Kunrath MF, Vargas ALM, Sesterheim P et al (2020) Extension of hydrophilicity stability by reactive plasma treatment and wet storage on TiO2 nanotube surfaces for biomedical implant applications. J Royal Soc Interf 17(170):20200650. https://doi.org/10.1098/rsif.2020.0650 Sarraf M, Razak BA, Dabbagh A et al (2016) Optimizing PVD conditions for electrochemical anodization growth of well-adherent Ta2O5 nanotubes on Ti–6Al–4V alloy. RSC Adv 6(82):78999–79015. https://doi.org/10.1039/C6RA11290K Cui C, Liu H, Li YC et al (2015) Fabrication and biocompatibility of nano-TiO2/titanium alloys biomaterials. Mater Lett 59(24–25):3144–3148. https://doi.org/10.1016/j.matlet.2005.05.037 Smeets R, Precht C, Hahn M et al (2017) Biocompatibility and osseointegration of titanium implants with a silver-doped polysiloxane coating: an in vivo pig model. Int J Oral Maxillofac Implants 32(6):1338–1345. https://doi.org/10.11607/jomi.5533 Rashid S, Sebastiani M, Zeeshan Mughal M et al (2021) Influence of the silver content on mechanical properties of Ti-Cu-Ag thin films. Nanomaterials 11(2):435. https://doi.org/10.3390/nano11020435 Bui VD, Mwangi JW, Meinshausen AK et al (2020) Antibacterial coating of Ti-6Al-4V surfaces using silver nano-powder mixed electrical discharge machining. Surface Coatings Technol 383:125254. https://doi.org/10.1016/j.surfcoat.2019.125254 Gaviria J, Alcudia A, Begines B et al (2021) Synthesis and deposition of silver nanoparticles on porous titanium substrates for biomedical applications. Surface Coatings Technol 406:126667. https://doi.org/10.1016/j.surfcoat.2020.126667 Mandakhalikar KD, Wang R, Rahmat JN et al (2018) Restriction of in vivo infection by antifouling coating on urinary catheter with controllable and sustained silver release: a proof of concept study. BMC Infect Dis 18(1):1–9. https://doi.org/10.1186/s12879-018-3296-1 Kheur S, Singh N, Bodas D et al (2017) Nanoscale silver depositions inhibit microbial colonization and improve biocompatibility of titanium abutments. Colloids Surf B Biointerf 159:151–158. https://doi.org/10.1016/j.colsurfb.2017.07.079 Ewald A, Glückermann SK, Thull R et al (2006) Antimicrobial titanium/silver PVD coatings on titanium. Biomed Eng Online 5(1):1–10. https://doi.org/10.1186/1475-925X-5-22 Sidambe AT (2014) Biocompatibility of advanced manufactured titanium implants—a review. Mater 7(12):8168–8188. https://doi.org/10.3390/ma7128168 Jang TS, Kim DE, Han G et al (2020) Powder based additive manufacturing for biomedical application of titanium and its alloys: a review. Biomed Eng Lett 10(4):505–516. https://doi.org/10.1007/s13534-020-00177-2 Chen Y, Clark S, Sinclair L et al (2021) Synchrotron X-ray imaging of directed energy deposition additive manufacturing of titanium alloy Ti-6242. Addit Manuf 41:101969. https://doi.org/10.1016/j.addma.2021.101969 Dong Y, Li YL, Zhou SY et al (2021) Cost-affordable Ti-6Al-4V for additive manufacturing: powder modification, compositional modulation and laser in-situ alloying. Addit Manuf 37:101699. https://doi.org/10.1016/j.addma.2020.101699 Barthel B, Janas F, Wieland S (2021) Powder condition and spreading parameter impact on green and sintered density in metal binder jetting. Powder Metall. https://doi.org/10.1080/00325899.2021.1912923 Bieske J, Franke M, Schloffer M et al (2020) Microstructure and properties of TiAl processed via an electron beam powder bed fusion capsule technology. Intermetallics 126:106929. https://doi.org/10.1016/j.intermet.2020.106929 Kalayda T, Kirsankin A, Ivannikov AY et al (2021) The plasma atomization process for the Ti-Al-V powder production. J Phys Conf Ser 1942:012046 Perminov A, Bartzsch G, Franke A et al (2021) Manufacturing Fe–TiC Composite powder via inert gas atomization by forming reinforcement phase in situ. Adv Eng Mater 23(3):2000717. https://doi.org/10.1002/adem.202000717 Nie Y, Tang JJ, Ye XJ et al (2020) Particle defects and related properties of metallic powders produced by plasma rotating electrode process. Adv Powder Technol 31(7):2912–2920. https://doi.org/10.1016/j.apt.2020.05.018 Taniguchi N, Fujibayashi S, Takemoto M et al (2016) Effect of pore size on bone ingrowth into porous titanium implants fabricated by additive manufacturing: an in vivo experiment. Mater Sci Eng C Mater Biol Appl 59:690–701. https://doi.org/10.1016/j.msec.2015.10.069 Wang X, Xu SQ, Zhou SW et al (2016) Topological design and additive manufacturing of porous metals for bone scaffolds and orthopaedic implants: a review. Biomaterials 83:127–141. https://doi.org/10.1016/j.biomaterials.2016.01.012 Ragone V, Canciani E, Arosio M et al (2020) In vivo osseointegration of a randomized trabecular titanium structure obtained by an additive manufacturing technique. J Mater Sci Mater Med 31(2):1–11. https://doi.org/10.1007/s10856-019-6357-0 Barba D, Alabort E, Reed R (2019) Synthetic bone: design by additive manufacturing. Acta Biomater 97:637–656. https://doi.org/10.1016/j.actbio.2019.07.049 Egan DS, Dowling DP (2019) Influence of process parameters on the correlation between in-situ process monitoring data and the mechanical properties of Ti-6Al-4V non-stochastic cellular structures. Addit Manuf 30:100890. https://doi.org/10.1016/j.addma.2019.100890 Trevisan F, Calignano F, Aversa A et al (2018) Additive manufacturing of titanium alloys in the biomedical field: processes, properties and applications. J Appl Biomater Funct Mater 16(2):57–67. https://doi.org/10.5301/jabfm.5000371 Dhiman S, Sidhu SS, Singh P et al (2019) Mechanobiological assessment of Ti-6Al-4V fabricated via selective laser melting technique: a review. Rapid Prototyping J 25:1266–1284. https://doi.org/10.1108/RPJ-03-2019-0057 Ameen W, Al-Ahmari A, Mohammed MK et al (2018) Design, finite element analysis (FEA), and fabrication of custom titanium alloy cranial implant using electron beam melting additive manufacturing. Advn Prod Eng Manage 13(3):267–278. https://doi.org/10.14743/apem2018.3.289 He Y, Burkhalter D, Durocher D et al (2018). Solid-lattice hip prosthesis design: applying topology and lattice optimization to reduce stress shielding from hip implants. 2018 Design of Medical Devices Conference p.9–12. https://doi.org/10.1115/DMD2018-6804 Murr L (2017) Open-cellular metal implant design and fabrication for biomechanical compatibility with bone using electron beam melting. J Mech Behav Biomed Mater 76:164–177. https://doi.org/10.1016/j.jmbbm.2017.02.019 Weißmann V, Drescher P, Bader R et al (2017) Comparison of single Ti6Al4V struts made using selective laser melting and electron beam melting subject to part orientation. Metals 7(3):91. https://doi.org/10.3390/MET7030091 Soylemez E (2020) High deposition rate approach of selective laser melting through defocused single bead experiments and thermal finite element analysis for Ti-6Al-4V. Addit Manuf 31:100984. https://doi.org/10.1016/j.addma.2019.100984 Grabovetskaya GP, Stepanova EN, Mishin IP et al (2020) The effect of irradiation of a titanium alloy of the Ti–6Al–4V–H system with pulsed electron beams on its creep. Russian Phys J 63(6):932–939. https://doi.org/10.1007/s11182-020-02120-5 Adamovic D, Ristic B, Zivic F (2018). Review of existing biomaterials—method of material selection for specific applications in orthopedics. In: Zivic F, Affatato S, Trajanovic M (Eds.), Biomaterials in Clinical Practice, Springer, Cham, p.47–99. https://doi.org/10.1007/978-3-319-68025-5_3 Wang J, Li QQ, Xiong CY et al (2018) Effect of Zr on the martensitic transformation and the shape memory effect in Ti-Zr-Nb-Ta high-temperature shape memory alloys. J Alloys Compounds 737:672–677. https://doi.org/10.1016/j.jallcom.2017.12.003 Cui YW, Chen LY, Liu XX (2021) Pitting corrosion of biomedical titanium and titanium alloys: a brief review. Curr Nanosci 17(2):241–256. https://doi.org/10.2174/1573413716999201125221211 Chui P, Jing R, Zhang FG et al (2020) Mechanical properties and corrosion behavior of β-type Ti-Zr-Nb-Mo alloys for biomedical application. J Alloys Compounds 842:155693. https://doi.org/10.1016/j.jallcom.2020.155693 Tardelli JDC, Bolfarini C, Dos Reis AC (2020) Comparative analysis of corrosion resistance between beta titanium and Ti-6Al-4V alloys: a systematic review. J Trace Elements Med Biol 62:126618. https://doi.org/10.1016/j.jtemb.2020.126618 Konopatsky A, Dubinskiy SM, Zhukova YS et al (2017) Ternary Ti-Zr-Nb and quaternary Ti-Zr-Nb-Ta shape memory alloys for biomedical applications: structural features and cyclic mechanical properties. Mater Sci Eng A 702:301–311. https://doi.org/10.1016/j.msea.2017.07.046 Wei K, Wang Z, Zeng X (2018) Effect of heat treatment on microstructure and mechanical properties of the selective laser melting processed Ti-5Al-2.5 Sn α titanium alloy. Mater Sci Eng A 709:301–311. https://doi.org/10.1016/j.msea.2017.10.061 Eisenbarth E, Velten D, Müller M et al (2004) Biocompatibility of β-stabilizing elements of titanium alloys. Biomaterials 25(26):5705–5713. https://doi.org/10.1016/j.biomaterials.2004.01.021 Hsu HC, Hsu SK, Wu SC et al (2010) Structure and mechanical properties of as-cast Ti–5Nb–xFe alloys. Mater Charact 61(9):851–858. https://doi.org/10.1016/j.matchar.2010.05.003 Chen S, Tsoi JKH, Tsang PCS et al (2020) Candida albicans aspects of binary titanium alloys for biomedical applications. Regener Biomater 7(2):213–220. https://doi.org/10.1093/rb/rbz052 Iijima Y, Nagase T, Matsugaki A et al (2021) Design and development of Ti–Zr–Hf–Nb–Ta–Mo high-entropy alloys for metallic biomaterials. Mater Des 202:109548. https://doi.org/10.1016/j.matdes.2021.109548 Nagase T, Iijima Y, Matsugaki A et al (2020) Design and fabrication of Ti–Zr-Hf-Cr-Mo and Ti–Zr-Hf-Co-Cr-Mo high-entropy alloys as metallic biomaterials. Mater Sci Eng C 107:110322. https://doi.org/10.1016/j.msec.2019.110322 Park YJ, Song YH, An JH et al (2013) Cytocompatibility of pure metals and experimental binary titanium alloys for implant materials. J Dent 41(12):1251–1258. https://doi.org/10.1016/j.jdent.2013.09.003 Cremasco A, Messias AD, Esposito AR et al (2011) Effects of alloying elements on the cytotoxic response of titanium alloys. Mater Sci Eng C 31(5):833–839. https://doi.org/10.1016/j.msec.2010.12.013 Mydin R, Hazan R, FaridWajidi AF et al (2018). Titanium dioxide nanotube arrays for biomedical implant materials and nanomedicine applications. In Yang DF (Ed.), Titanium Dioxide—Material for a Sustainable Environment, p.469–483. https://doi.org/10.5772/intechopen.73060 Kafshgari MH, Goldmann WH (2020) Insights into theranostic properties of titanium dioxide for nanomedicine. Nano-Micro Lett 12(1):1–35. https://doi.org/10.1007/s40820-019-0362-1 Sarraf M, Nasiri-Tabrizi B, Yeong CH et al (2020) Mixed oxide nanotubes in nanomedicine: a dead-end or a bridge to the future? Ceram Int 47(3):2917–2948. https://doi.org/10.1016/j.ceramint.2020.09.177 Kunrath MF, Hubler R, Shinkai R et al (2018) Application of TiO2 nanotubes as a drug delivery system for biomedical implants: a critical overview. Chem Select 3(40):11180–11189. https://doi.org/10.1002/slct.201801459 Dabbagh A, Hedayatnasab Z, Karimian H et al (2019) Polyethylene glycol-coated porous magnetic nanoparticles for targeted delivery of chemotherapeutics under magnetic hyperthermia condition. Int J Hyperthermia 36(1):104–114. https://doi.org/10.1080/02656736.2018.1536809 Nancy D, Rajendran N (2018) Vancomycin incorporated chitosan/gelatin coatings coupled with TiO2–SrHAP surface modified cp-titanium for osteomyelitis treatment. Int J Biol Macromol 110:197–205. https://doi.org/10.1016/j.ijbiomac.2018.01.004 Wang Q, Huang JY, Li HQ et al (2017) Recent advances on smart TiO2 nanotube platforms for sustainable drug delivery applications. Int J Nanomed 12:151–165. https://doi.org/10.2147/IJN.S117498 Wang Q, Huang JY, Li HQ et al (2016) TiO2 nanotube platforms for smart drug delivery: a review. Int J Nanomed 11:4819–4834. https://doi.org/10.2147/IJN.S108847 Jia H, Kerr LL (2015) Kinetics of drug release from drug carrier of polymer/TiO2 nanotubes composite—pH dependent study. J Appl Polymer Sci 132(7):41570. https://doi.org/10.1002/APP.41570 Wang T, Weng ZY, Liu XM et al (2017) Controlled release and biocompatibility of polymer/titania nanotube array system on titanium implants. Bioactive Mater 2(1):44–50. https://doi.org/10.1016/j.bioactmat.2017.02.001 Ma A, You YP, Chen B et al (2020) Icariin/aspirin composite coating on TiO2 nanotubes surface induce immunomodulatory effect of macrophage and improve osteoblast activity. Coatings 10(4):427. https://doi.org/10.3390/coatings10040427 Zhang X, Zhang Y, Yates MZ (2018) Hydroxyapatite nanocrystal deposited titanium dioxide nanotubes loaded with antibiotics for combining biocompatibility and antibacterial properties. MRS Adv 3(30):1703–1709. https://doi.org/10.1557/adv.2018.114 Mesbah M, Sarraf M, Dabbagh A et al (2020) Synergistic enhancement of photocatalytic antibacterial effects in high-strength aluminum/TiO2 nanoarchitectures. Ceramics Int 46(15):24267–24280. https://doi.org/10.1016/j.ceramint.2020.06.207 Sm RB, Sreekantan S, Hazan R et al (2017) Cellular homeostasis and antioxidant response in epithelial HT29 cells on titania nanotube arrays surface. Oxid Med Cell Longevity 2017:3708048. https://doi.org/10.1155/2017/3708048 Zhang J, Li GL, Zhang XR et al (2020) Systematically evaluate the physicochemical property and hemocompatibility of phase dependent TiO2 on medical pure titanium. Surface Coatings Technol 404:126501. https://doi.org/10.1016/j.surfcoat.2020.126501 Salimi E (2019) Superhydrophobic blood-compatible surfaces: state of the art. Int J Polymeric Mater Polymeric Biomater 69(6):363–372. https://doi.org/10.1080/00914037.2019.1570510 Cao Y (2019). Engineering therapeutic biomaterials for medical implants. PhD Thesis, University of California, San Francisco, USA. Woodbury JM (2015), Hemocompatibility of polymeric materials for blood-contacting applications. PhD Thesis, Colorado State University, USA.