A state-of-the-art review of the fabrication and characteristics of titanium and its alloys for biomedical applications
Tóm tắt
Commercially pure titanium and titanium alloys have been among the most commonly used materials for biomedical applications since the 1950s. Due to the excellent mechanical tribological properties, corrosion resistance, biocompatibility, and antibacterial properties of titanium, it is getting much attention as a biomaterial for implants. Furthermore, titanium promotes osseointegration without any additional adhesives by physically bonding with the living bone at the implant site. These properties are crucial for producing high-strength metallic alloys for biomedical applications. Titanium alloys are manufactured into the three types of α, β, and α + β. The scientific and clinical understanding of titanium and its potential applications, especially in the biomedical field, are still in the early stages. This review aims to establish a credible platform for the current and future roles of titanium in biomedicine. We first explore the developmental history of titanium. Then, we review the recent advancement of the utility of titanium in diverse biomedical areas, its functional properties, mechanisms of biocompatibility, host tissue responses, and various relevant antimicrobial strategies. Future research will be directed toward advanced manufacturing technologies, such as powder-based additive manufacturing, electron beam melting and laser melting deposition, as well as analyzing the effects of alloying elements on the biocompatibility, corrosion resistance, and mechanical properties of titanium. Moreover, the role of titania nanotubes in regenerative medicine and nanomedicine applications, such as localized drug delivery system, immunomodulatory agents, antibacterial agents, and hemocompatibility, is investigated, and the paper concludes with the future outlook of titanium alloys as biomaterials.
Tài liệu tham khảo
Goncalves AD, Balestri W, Reinwald Y (2020) Biomedical implants for regenerative therapies. Biomaterials. https://doi.org/10.5772/intechopen.91295
Kurtz S, Ong K, Lau E et al (2007) Projections of primary and revision hip and knee arthroplasty in the United States from 2005 to 2030. J Bone Joint Surg Am 89(4):780–785. https://doi.org/10.2106/JBJS.F.00222
Khosravi F, Khorasani SN, Khalili S et al (2020) Development of a highly proliferated bilayer coating on 316L stainless steel implants. Polymers 12(5):1022. https://doi.org/10.3390/polym12051022
Santos G (2017) The importance of metallic materials as biomaterials. Adv Tissue Eng Regen Med Open Access 3(1):300–302
Sarraf M, Zalnezhad E, Bushroa AR et al (2014) Structural and mechanical characterization of Al/Al2O3 nanotube thin film on TiV alloy. Appl Surface Sci 321:511–519. https://doi.org/10.1016/j.apsusc.2014.10.040
Xu WC, Yu F, Yang LH et al (2018) Accelerated corrosion of 316L stainless steel in simulated body fluids in the presence of H2O2 and albumin. Mater Sci Eng C 92:11–19. https://doi.org/10.1016/j.msec.2018.06.023
Yamanaka K, Mori M, Kartika I et al (2019) Effect of multipass thermomechanical processing on the corrosion behaviour of biomedical Co–Cr–Mo alloys. Corrosion Sci 148:178–187. https://doi.org/10.1016/j.corsci.2018.12.009
Biesiekierski A, Munir K, Li YC et al (2020) Material selection for medical devices. Metallic Biomater Process Med Dev Manuf 2020:31–94. https://doi.org/10.1016/B978-0-08-102965-7.00002-3
Su EP, Justin DF, Pratt CR et al (2018) Effects of titanium nanotubes on the osseointegration, cell differentiation, mineralisation and antibacterial properties of orthopaedic implant surfaces. Bone Joint J 100-B(1 Supple A):9–16. https://doi.org/10.1302/0301-620X.100B1.BJJ-2017-0551.R1
Kopova I, Kronek J, Bacakova L et al (2019) A cytotoxicity and wear analysis of trapeziometacarpal total joint replacement implant consisting of DLC-coated Co-Cr-Mo alloy with the use of titanium gradient interlayer. Diamond Related Mater 97:107456. https://doi.org/10.1016/j.diamond.2019.107456
Bothe R (1940) Reaction of bone to multiple metallic implants. Surg Gynecol Obstet 71:598–602
Kroll W (1940) The production of ductile titanium. Trans Electrochem Soc 78(1):35. https://doi.org/10.1149/1.3071290
Leventhal GS (1951) Titanium, a metal for surgery. J Bone Joint Surg Am 33(2):473–474. https://doi.org/10.2106/00004623-195133020-00021
Beder OE, Stevenson JK, Jones TW (1957) A further investigation of the surgical application of titanium metal in dogs. Surgery 41(6):1012–1015 (PMID: 13442870)
Martola M, Lindqvist C, Hänninen H et al (2007) Fracture of titanium plates used for mandibular reconstruction following ablative tumor surgery. J Biomed Mater Res B Appl Biomater 80(2):345–352. https://doi.org/10.1002/jbm.b.30603
Van Noort R (1987) Titanium: the implant material of today. J Mater Sci 22(11):3801–3811. https://doi.org/10.1007/BF01133326
Venkatesh B, Chen D, Bhole S (2008) Three-dimensional fractal analysis of fracture surfaces in a titanium alloy for biomedical applications. Scripta Mater 59(4):391–394. https://doi.org/10.1016/j.scriptamat.2008.04.010
Ran J, Jiang FC, Sun XJ et al (2020) Microstructure and mechanical properties of Ti-6Al-4V fabricated by electron beam melting. Curr Comput-Aided Drug Des 10(11):972. https://doi.org/10.3390/cryst10110972
Fu Y, Xiao WL, Wang JS et al (2021) A novel strategy for developing α+β dual-phase titanium alloys with low Young’s modulus and high yield strength. J Mater Sci Technol 76:122–128. https://doi.org/10.1016/j.jmst.2020.11.018
Semlitsch MF, Weber H, Streicher RM et al (1992) Joint replacement components made of hot-forged and surface-treated Ti-6Al-7Nb alloy. Biomaterials 13(11):781–788. https://doi.org/10.1016/0142-9612(92)90018-J
Whittenberger JD, Moore TJ (1979) Elevated temperature flow strength, creep resistance and diffusion welding characteristics of Ti-6Al-2Nb-1Ta-0.8 Mo. Metallurgical Trans A 10(11):1597–1605. https://doi.org/10.1007/BF02811691
Hanawa T (2012) Research and development of metals for medical devices based on clinical needs. Sci Technol Adv Mater 13(6):064102. https://doi.org/10.1088/1468-6996/13/6/064102
Maehara K, Doi K, Matsushita T et al (2002) Application of vanadium-free titanium alloys to artificial hip joints. Mater Trans 43(12):2936–2942. https://doi.org/10.2320/matertrans.43.2936
Aguilar C, Arancibia M, López LA et al (2019) Influence of porosity on the elastic modulus of Ti-Zr-Ta-Nb foams with a low Nb content. Metals 9(2):176. https://doi.org/10.3390/met9020176
Wang KK, Gustavson LJ, Dumbleton JH (1996). Microstructure and properties of a new beta titanium alloy, Ti-12Mo-6Zr-2Fe, developed for surgical implants. In: Brown SA, Lemons JE (Eds.), Medical Applications of Titanium and Its Alloys: the Material and Biological Issues, American Sociery for Testing and Materials, USA, p. 76–87. https://doi.org/10.1520/STP16071S
Im YD, Lee YK (2020) Effects of Mo concentration on recrystallization texture, deformation mechanism and mechanical properties of Ti–Mo binary alloys. J Alloys Compd 821:153508. https://doi.org/10.1016/j.jallcom.2019.153508
Pellizzari M, Jam A, Tachon M et al (2020) A 3D-printed ultra-low Young’s modulus β-Ti alloy for biomedical applications. Materials 13(12):2792. https://doi.org/10.3390/ma13122792
Koizumi H, Ishii T, Okazaki T et al (2018) Castability and mechanical properties of Ti-15Mo-5Zr-3Al alloy in dental casting. J Oral Sci 60(2):285–292. https://doi.org/10.2334/josnusd.17-0280
Okazaki Y (2001) A new Ti–15Zr–4Nb–4Ta alloy for medical applications. Curr Opin Solid State Mater Sci 5(1):45–53. https://doi.org/10.1016/S1359-0286(00)00025-5
Matsuda Y, Nakamura T, Ido M et al (1997) Femoral component made of Ti-15Mo-5Zr-3Al alloy in total hip arthroplasty. J Orthop Sci 2(3):166–170. https://doi.org/10.1007/BF02492973
Bruschi M, Steinmüller-Nethl D, Goriwoda W et al (2015) Composition and modifications of dental implant surfaces. J Oral Implants 2015:527426. https://doi.org/10.1155/2015/527426
Ida K, Togaya T, Tsutsumi S et al (1982) Effect of magnesia investments in the dental casting of pure titanium or titanium alloys. Dent Mater J 1(1):8–21. https://doi.org/10.4012/dmj.1.8
Marteleur M, Sun F, Gloriant T et al (2012) On the design of new β-metastable titanium alloys with improved work hardening rate thanks to simultaneous TRIP and TWIP effects. Scripta Mater 66(10):749–752. https://doi.org/10.1016/j.scriptamat.2012.01.049
Buehler WJ, Gilfrich JV, Wiley R (1963) Effect of low-temperature phase changes on the mechanical properties of alloys near composition TiNi. J Appl Phys 34(5):1475–1477. https://doi.org/10.1063/1.1729603
Luo Y, Yang L, Tian M (2013) Application of biomedical-grade titanium alloys in trabecular bone and artificial joints. In: Davim P (Ed.), Biomaterials and Medical Tribology. Woodhead Publishing, Elsevier, p. 181–216. https://doi.org/10.1533/9780857092205.181
Xue L, Koul AK, Bibby M et al (1970) A survey of surface treatments to improve the fretting fatigue resistance of Ti-6Al-4V. WIT Trans Eng Sci 8:265–272. https://doi.org/10.2495/SURF950311
Hanawa T (2019) Overview of metals and applications. In Niinomi M (Ed.), Metals for Biomedical Devices, Woodhead Publishing, p.3–24. https://doi.org/10.1533/9781845699246.1.3
Semlitsch M, Staub F, Weber H (1985) Titanium-aluminium-niobium alloy, development for biocompatible, high strength surgical implants - Titan-Aluminium-NIOB-Legierung, entwickelt für körperverträgliche, hochfeste implantate in der chirurgie. Biomed Eng Biomed Technik 30(12):334–339. https://doi.org/10.1515/bmte.1985.30.12.334
Bhambri SK, Shetty RH, Gilbertson LN (1996) Optimization of properties of Ti-15Mo-2.8Nb-3Al-0.2Si & Ti-15Mo-2.8Nb-0.2Si-.260 beta titanium alloys for application in prosthetic implants. In: Brown SA, Lemons JE (Eds.), Medical Applications of Titanium and Its Alloys: the Material and Biological Issues. American Sociery for Testing and Materials, USA, p. 88–95
Niinomi M (1998) Mechanical properties of biomedical titanium alloys. Mater Sci Eng A 243(1–2):231–236. https://doi.org/10.1016/S0921-5093(97)00806-X
Elias L, Schneider SG, Schneider S et al (2006) Microstructural and mechanical characterization of biomedical Ti–Nb–Zr (–Ta) alloys. Mater Sci Eng A 432(1–2):108–112. https://doi.org/10.1016/j.msea.2006.06.013
Hao Y, Yang R, Niinomi M et al (2003) Aging response of the Young’s modulus and mechanical properties of Ti-29Nb-13Ta-46 Zr for biomedical applications. Metallurgical Mater Trans A 34(4):1007–1012. https://doi.org/10.1007/s11661-003-0230-x
Xu L, Chen YY, Liu ZG et al (2008) The microstructure and properties of Ti–Mo–Nb alloys for biomedical application. J Alloys Compd 453(1–2):320–324. https://doi.org/10.1016/j.jallcom.2006.11.144
Yang R, Hao Y, Li S (2011) Development and application of low-modulus biomedical titanium alloy Ti2448. Biomed Eng Trends 10:225–247. https://doi.org/10.5772/13269
Warburton A, Girdler SJ, Mikhail CM et al (2020) Biomaterials in spinal implants: a review. Neurospine 17(1):101. https://doi.org/10.14245/ns.1938296.148
Tan JH, Cheong CK, Hey HWD (2021) Titanium (Ti) cages may be superior to polyetheretherketone (PEEK) cages in lumbar interbody fusion: a systematic review and meta-analysis of clinical and radiological outcomes of spinal interbody fusions using Ti versus PEEK cages. Europ Spine J 30(5):1285–1295. https://doi.org/10.1007/s00586-021-06748-w
Alvarez AG, Evans PL, Dovgalski L et al (2021) Design, additive manufacture and clinical application of a patient-specific titanium implant to anatomically reconstruct a large chest wall defect. Rapid Prototyping J 27(2):1355–2546
Baltatu MS, Tugui CA, Perju MC, et al (2019). Biocompatible titanium alloys used in medical applications. Rev Chim 70(4):1302–1306. https://doi.org/10.37358/RC.19.4.7114
Vijayavenkataraman S, Gopinath A, Lu WF (2020) A new design of 3D-printed orthopedic bone plates with auxetic structures to mitigate stress shielding and improve intra-operative bending. Bio-Des Manuf 3:98–108. https://doi.org/10.1007/s42242-020-00066-8
Shakir DA, Abdul-Ameer FM (2018) Effect of nano-titanium oxide addition on some mechanical properties of silicone elastomers for maxillofacial prostheses. J Taibah Univ Med Sci 13(3):281–290. https://doi.org/10.1016/j.jtumed.2018.02.007
Cevik P, Eraslan O (2017) Effects of the addition of titanium dioxide and silaned silica nanoparticles on the mechanical properties of maxillofacial silicones. J Prosthodontics C 26(7):611–615. https://doi.org/10.1111/jopr.12438
Asserghine A, Filotás D, Németh B et al (2018) Potentiometric scanning electrochemical microscopy for monitoring the pH distribution during the self-healing of passive titanium dioxide layer on titanium dental root implant exposed to physiological buffered (PBS) medium. Electrochem Commun 95:1–4. https://doi.org/10.1016/j.elecom.2018.08.008
Das R, Bhattacharjee C (2019). Titanium-based nanocomposite materials for dental implant systems. In Asiri AM, Inamuddin, Mohammad A (Eds.), Applications of Nanocomposite Materials in Dentistry, Woodhead Publishing, p.271–284. https://doi.org/10.1016/B978-0-12-813742-0.00016-X
Niinomi M (2003) Recent research and development in titanium alloys for biomedical applications and healthcare goods. Sci Technol Adv Mater 4(5):445. https://doi.org/10.1016/j.stam.2003.09.002
Herrmann H, Kern JS, Kern T et al (2020) Early and mature biofilm on four different dental implant materials: an in vivo human study. Clin Oral Implants Res 31(11):1094–1104. https://doi.org/10.1111/clr.13656
Wu C, Wang Q, Mao T et al (2019) Relationship between lattice defects and phase transformation in hydrogenation/dehydrogenation process of the V60Ti25Cr3Fe12 alloy. Int J Hydrogen Energy 44(18):9368–9377. https://doi.org/10.1016/j.ijhydene.2019.02.097
Shahryari L, JavidSharifi B, Dabaghmanesh M (2019) A case study of performance improvement of femur prosthesis. J Struct Eng Geo-Techn 10(2):57–75
Kumari N, Kumar K (2017). Mechanisms and materials of orthotic calipers for polio infected patients—a review. Proc 2nd International Conference for Convergence in Technology (I2CT), p.7–9. https://doi.org/10.1109/I2CT.2017.8226086
Zhu Y, Liu DD, Wang XL et al (2019) Polydopamine-mediated covalent functionalization of collagen on a titanium alloy to promote biocompatibility with soft tissues. J Mater Chem B 7(12):2019–2031. https://doi.org/10.1039/c8tb03379j
Hol MK, Cremers CWRJ, Coppens-Schellekens W et al (2005) The BAHA softband: a new treatment for young children with bilateral congenital aural atresia. Int J Pediatr Otorhinolaryngol 69(7):973–980. https://doi.org/10.1016/j.ijporl.2005.02.010
Ferreira CC, Ricci VP, Sousa LL et al (2017) Improvement of titanium corrosion resistance by coating with poly-caprolactone and poly-caprolactone/titanium dioxide: potential application in heart valves. Mater Res 20:126–133. https://doi.org/10.1590/1980-5373-MR-2017-0425
Aikawa Y, Kataoka Y, Kanaya T et al (2018) Procedural challenge of coronary catheterization for ST-segment elevation myocardial infarction in patient who underwent transcatheter aortic valve replacement using the CoreValveTM. Cardiovasc Diagn Ther 8(2):190–195. https://doi.org/10.21037/cdt.2018.04.02
King MW, Bambharoliya T, Ramakrishna H et al (2020) Evolution of angioplasty devices. In Coronary Artery Disease and the Evolution of Angioplasty Devices, Springer, New York
Meininghaus DG, Kruells-Muench J, Peltroche-Llacsahuanga H (2020) First-in-man implantation of a gold-coated biventricular defibrillator: difficult differential diagnosis of metal hypersensitivity reaction vs chronic device infection. HeartRhythm Case Rep 6(6):304–307. https://doi.org/10.1016/j.hrcr.2020.02.004
Kashin OA, Krukovskii KV, Lotkov AI (2018). Opportunities and prospects for the use of porous silicon to create a polymer-free drug coating on intravascular stents. AIP Conf Proc 2051(1):020119–020119–4.
Suzuki T, Tokuda Y, Kobayashi H (2017) The development of yellow nail syndrome after the implantation of a permanent cardiac pacemaker. Intern Med 56(19):2667–2669. https://doi.org/10.2169/internalmedicine.8769-16
Olin C (2001) Titanium in cardiac and cardiovascular applications. In: Brunette DM, Tengvall P, Textor M et al (Eds.), Titanium in Medicine, Springer, p.889–907. https://doi.org/10.1007/978-3-642-56486-4_26
Martov AG, Plekhanova OA, Ergakov DV et al (2020) Thermoexpandable urethral nickel–titanium stent memokath for managing urethral bulbar stricture after failed urethroplasty. J Endourol Case Rep 6(3):147–149. https://doi.org/10.1089/cren.2019.0146
Froes F, Qian M (2018) Titanium in medical and dental applications. Woodhead Publishing
Froes FS (2018). Titanium for medical and dental applications—an introduction. In Froes FH, Qian M (Eds.), Titanium in Medical and Dental Applications, Woodhead Publishing, p.3–21. https://doi.org/10.1016/B978-0-12-812456-7.00001-9
Abecassis IJ, Sen RD, Ellenbogen RG et al (2021) Developing microsurgical milestones for psychomotor skills in neurological surgery residents as an adjunct to operative training: the home microsurgery laboratory. J Neurosurg 135(1):318–326. https://doi.org/10.3171/2020.5.JNS201590
Glenn CA, Baker CM, Burks JD et al (2018) Dural closure in confined spaces of the skull base with nonpenetrating titanium clips. Operative Neurosurg 14(4):375–385. https://doi.org/10.1093/ons/opx140
Gunawarman B, Niinomi M, Akahori T et al (2005) Mechanical properties and microstructures of low cost β titanium alloys for healthcare applications. Mater Sci Eng C 25(3):304–311. https://doi.org/10.1016/j.msec.2004.12.015
Hong SH, Hwang YJ, Park SW et al (2019) Low-cost beta titanium cast alloys with good tensile properties developed with addition of commercial material. J Alloys Compd 793:271–276. https://doi.org/10.1016/j.jallcom.2019.04.200
Abdalla AO, Amrin A, Muhammad S et al (2017) Iron as a promising alloying element for the cost reduction of titanium alloys: a review. Appl Mech Mater 864:147–153. https://doi.org/10.4028/www.scientific.net/AMM.864.147
Khorasani AM, Goldberg M, Doeven EH et al (2015) Titanium in biomedical applications—properties and fabrication: a review. J Biomater Tissue Eng 5(8):593–619. https://doi.org/10.1166/jbt.2015.1361
Stepanovskaa J, Matejka R, Rosina J et al (2019) Treatments for enhancing the biocompatibility of titanium implants: a review. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 164(1):23–33. https://doi.org/10.5507/bp.2019.062
Khodaei M, Kelishadi SH (2018) The effect of different oxidizing ions on hydrogen peroxide treatment of titanium dental implant. Surface Coatings Technol 353:158–162. https://doi.org/10.1016/j.surfcoat.2018.08.037
Huang J, Chen HZ, Pan W et al (2020) Effect of nitrogen on the microstructures and mechanical behavior of Ti-6Al-4V alloy additively manufactured via tungsten inert gas welding. Mater Today Commun 24:101171. https://doi.org/10.1016/j.mtcomm.2020.101171
Baig MN, Khan FN, Junaid M (2007) Comparison of microstructure, mechanical properties, and residual stresses in tungsten inert gas, laser, and electron beam welding of Ti–5Al–2.5 Sn titanium alloy. Proc Inst Mech Eng Part L J Mater Des Appl 233(7):1336–1351
Paranthaman V, Dhinakaran V, Swapna Sai M et al (2021) A systematic review of fatigue behaviour of laser welding titanium alloys. Mater Today Proc 39(1):520–523. https://doi.org/10.1016/j.matpr.2020.08.249
Kumar SR, Kulkarni SK (2017) Analysis of hard machining of titanium alloy by Taguchi method. Mater Today Proc 4(10):10729–10738. https://doi.org/10.1016/j.matpr.2017.08.020
Sadeghpour S, Abbasi SM, Morakabati M et al (2018) A new multi-element beta titanium alloy with a high yield strength exhibiting transformation and twinning induced plasticity effects. Scripta Mater 145:104–108. https://doi.org/10.1016/j.scriptamat.2017.10.017
Hao X, Dong HG, Xia YQ et al (2019) Microstructure and mechanical properties of laser welded TC4 titanium alloy/304 stainless steel joint with (CoCrFeNi)100−xCux high-entropy alloy interlayer. J Alloys Compd 803:649–657. https://doi.org/10.1016/j.jallcom.2019.06.225
Al-Murshdy JMS, Ghayyib BJ (2019) Effect of heat treatment on properties of titanium biomedical alloy. J Univ Babylon Eng Sci 27(1):232–246
Koizumi H, Takeuchi Y, Imai H et al (2019) Application of titanium and titanium alloys to fixed dental prostheses. J Prosthodont Res 63(3):266–270. https://doi.org/10.1016/j.jpor.2019.04.011
Łęcka K, Gąsiorek J, Mazur-Nowacka A et al (2019) Adhesion and corrosion resistance of laser-oxidized titanium in potential biomedical application. Surface Coatings Technol 366:179–189. https://doi.org/10.1016/j.surfcoat.2019.03.032
Sarraf M, Sukiman NL, Nasiri-Tabrizi B et al (2019) In vitro bioactivity and corrosion resistance enhancement of Ti-6Al-4V by highly ordered TiO2 nanotube arrays. J Aust Ceramic Soc 55(1):187–200. https://doi.org/10.1007/s41779-018-0224-1
Cora ÖN, Koç M (2019) Micromanufacturing. Mod Manuf Process 7:149–184. https://doi.org/10.1002/9781119120384.ch7
Verma RP (2020) Titanium based biomaterial for bone implants: a mini review. Mater Today Proc 26:3148–3151. https://doi.org/10.1016/j.matpr.2020.02.649
Rafieerad A, Bushroa AR, Zalnezhad E et al (2015) Microstructural development and corrosion behavior of self-organized TiO2 nanotubes coated on Ti–6Al–7Nb. Ceramics Int 41(9):10844–10855. https://doi.org/10.1016/j.ceramint.2015.05.025
Gong D, Wang HL, Obbard EG et al (2020) Tuning thermal expansion by a continuing atomic rearrangement mechanism in a multifunctional titanium alloy. J Mater Sci Technol 80:234–243. https://doi.org/10.1016/j.jmst.2020.11.053
Heary RF, Parvathreddy N, Sampath S et al (2017). Elastic modulus in the selection of interbody implants. J Spine Surg 3(2):163–167. https://doi.org/10.21037/jss.2017.05.01
Suzuki G, Hirota M, Hoshi N (2019) Effect of surface treatment of multi-directionally forged (MDF) titanium implant on bone response. Metals 9(2):230. https://doi.org/10.3390/met9020230
Fousova M, Vojtech D, Jablonska E et al (2017) Novel approach in the use of plasma spray: preparation of bulk titanium for bone augmentations. Materials 10(9):987. https://doi.org/10.3390/ma10090987
Kholgh Eshkalak S, Rezvani Ghomi E, Dai YQ et al (2020) The role of three-dimensional printing in healthcare and medicine. Mater Des 194:108940. https://doi.org/10.1016/j.matdes.2020.108940
Niinomi M, Liu Y, Nakai M et al (2016) Biomedical titanium alloys with Young’s moduli close to that of cortical bone. Regenerative biomaterials 3(3):173–185. https://doi.org/10.1093/rb/rbw016
O’Brien T, Weisman DS, Ronchetti P et al (2004) Flexible titanium nailing for the treatment of the unstable pediatric tibial fracture. J Pediatr Orthop 24(6):601–609. https://doi.org/10.1097/00004694-200411000-00001
Niinomi M, Nakai M, Hieda J (2012) Development of new metallic alloys for biomedical applications. Acta Biomater 8(11):3888–3903. https://doi.org/10.1016/j.actbio.2012.06.037
Niinomi M (2011) Low modulus titanium alloys for inhibiting bone atrophy. Biomater Sci Eng. https://doi.org/10.5772/24549
Kondoh K, Umeda J, Soba R, et al (2018). Advanced TiNi shape memory alloy stents fabricated by a powder metallurgy route. In Froes FH, Qian M (Eds.), Titanium in Medical and Dental Applications, Woodhead Publishing, p.583–590. https://doi.org/10.1016/B978-0-12-812456-7.00027-5
Plaine AH, da Silva MR, Bolfarini C (2019). Microstructure and elastic deformation behavior of β-type Ti-29Nb-13Ta-4.6Zr with promising mechanical properties for stent applications. J Mater Res Technol 8(5):3852–3858. https://doi.org/10.1016/j.jmrt.2019.06.047
Li P, Ma XD, Tong T et al (2019) Microstructural and mechanical properties of β-type Ti–Nb–Sn biomedical alloys with low elastic modulus. Metals 9(6):712. https://doi.org/10.1016/j.jallcom.2019.152412
Kim HY, Ohmatsu Y, Kim JI et al (2004) Mechanical properties and shape memory behavior of Ti-Mo-Ga alloys. Mater Trans 45(4):1090–1095. https://doi.org/10.2320/matertrans.45.1090
Miyazaki S, Kim HY, Hosoda H (2006) Development and characterization of Ni-free Ti-base shape memory and superelastic alloys. Mater Sci Eng A 438:18–24. https://doi.org/10.1016/j.msea.2006.02.054
Shinohara Y, Matsumoto Y, Tahara M et al (2018) Development of <001>-fiber texture in cold-groove-rolled Ti-Mo-Al-Zr biomedical alloy. Materialia 1:52–61. https://doi.org/10.1016/j.mtla.2018.07.008
Maeshima T, Nishida M (2004) Shape memory and mechanical properties of biomedical Ti-Sc-Mo alloys. Mater Trans 45(4):1101–1105. https://doi.org/10.2320/MATERTRANS.45.1101
Li B, Xie R, Lu X (2020) Microstructure, mechanical property and corrosion behavior of porous Ti–Ta–Nb–Zr. Bioactive Mater 5(3):564–568. https://doi.org/10.1016/j.bioactmat.2020.04.014
Dorozhkin SV (2017) Calcium orthophosphate coatings and other deposits. Front Nanobiomed Res 3:1–84. https://doi.org/10.1186/2194-0517-1-1
Gallinetti S, Kihlstrom Burenstam Linder L, Åberg J et al (2021) Titanium reinforced calcium phosphate improves bone formation and osteointegration in ovine calvaria defects: a comparative 52-weeks study. Biomed Mater 16(3):035031. https://doi.org/10.1088/1748-605X/abca12
Domínguez-Trujillo C, Peón E, Chicardi E et al (2018) Sol-gel deposition of hydroxyapatite coatings on porous titanium for biomedical applications. Surface Coatings Technol 333:158–162. https://doi.org/10.1016/j.surfcoat.2017.10.079
Hu C, Aindow M, Wei M (2017) Focused ion beam sectioning studies of biomimetic hydroxyapatite coatings on Ti-6Al-4V substrates. Surface Coatings Technol 313:255–262. https://doi.org/10.1016/j.surfcoat.2017.01.103
Ke D, Vu AA, Bandyopadhyay A (2019) Compositionally graded doped hydroxyapatite coating on titanium using laser and plasma spray deposition for bone implants. Acta Biomater 84:414–423. https://doi.org/10.1016/j.actbio.2018.11.041
Cao J, Lian R, Jiang XH (2020) Magnesium and fluoride doped hydroxyapatite coatings grown by pulsed laser deposition for promoting titanium implant cytocompatibility. Appl Surface Sci 515:146069. https://doi.org/10.1016/j.apsusc.2020.146069
Ambrogio G, Palumbo G, Sgambitterra E et al (2018) Experimental investigation of the mechanical performances of titanium cranial prostheses manufactured by super plastic forming and single-point incremental forming. Int J Adv Manuf Technol 98(5):1489–1503. https://doi.org/10.1007/s00170-018-2338-6
Alagarsamy K, Vishwakarma V, Kaliaraj GS (2019) Synthesis and characterization of bioactive composite coating on titanium by PVD for biomedical application. IOP Conf Ser Mater Sci Eng 561:012027. https://doi.org/10.1088/1757-899X/561/1/012027
Won S, Huh YH, Cho LR et al (2017) Cellular response of human bone marrow derived mesenchymal stem cells to titanium surfaces implanted with calcium and magnesium ions. Tissue Eng Regener Med 14(2):123–131. https://doi.org/10.1007/s13770-017-0028-3
Karimi N, Kharaziha M, Raeissi K (2019) Electrophoretic deposition of chitosan reinforced graphene oxide-hydroxyapatite on the anodized titanium to improve biological and electrochemical characteristics. Mater Sci Eng C 98:140–152. https://doi.org/10.1016/j.msec.2018.12.136
Lu M, Chen H, Yuan B et al (2020) Electrochemical deposition of nanostructured hydroxyapatite coating on titanium with enhanced early stage osteogenic activity and osseointegration. Int J Nanomed 15:6605–6618. https://doi.org/10.2147/IJN.S268372
Kokubo T, Yamaguchi S (2016) Novel bioactive materials developed by simulated body fluid evaluation: surface-modified ti metal and its alloys. Acta Biomater 44:16–30. https://doi.org/10.1016/j.actbio.2016.08.013
Hanawa T (2019) Titanium–tissue interface reaction and its control with surface treatment. Front Bioeng Biotechnol 7:170. https://doi.org/10.3389/fbioe.2019.00170
Surender L, Rekha RK, Veerendra NRP et al (2011) Surface characteristics of titanium dental implants for rapid osseointegration. Indian J Dent Adv 3(3):602–612
Le Guéhennec L, Soueidan A, Layrolle P et al (2007) Surface treatments of titanium dental implants for rapid osseointegration. Dent mater 23(7):844–854. https://doi.org/10.1016/j.dental.2006.06.025
Yu M, Gong JX, Zhou Y et al (2017) Surface hydroxyl groups regulate the osteogenic differentiation of mesenchymal stem cells on titanium and tantalum metals. J Mater Chem B 5(21):3955–3963. https://doi.org/10.1039/c7tb00111h
Paradowska E, Arkusz K, Pijanowska DG (2019) The influence of the parameters of a gold nanoparticle deposition method on titanium dioxide nanotubes, their electrochemical response, and protein adsorption. Biosensors 9(4):138. https://doi.org/10.3390/bios9040138
Jia E, Zhao X, Lin Y et al (2020) Protein adsorption on titanium substrates and its effects on platelet adhesion. Appl Surface Sci 529:146986. https://doi.org/10.1016/j.apsusc.2020.146986
Hiji A, Hanawa T, Shimabukuro M et al (2021) Initial formation kinetics of calcium phosphate on titanium in Hanks’ solution characterized using XPS. Surface Interf Anal 53(2):185–193. https://doi.org/10.1002/sia.6900
Sarraf M, Dabbagh A, Abdul Razak B et al (2018) Highly-ordered TiO2 nanotubes decorated with Ag2O nanoparticles for improved biofunctionality of Ti6Al4V. Surface Coatings Technol 349:1008–1017. https://doi.org/10.1016/j.surfcoat.2018.06.054
Souza JC, Sordi MB, Kanazawa M et al (2019) Nano-scale modification of titanium implant surfaces to enhance osseointegration. Acta Biomater 94:112–131. https://doi.org/10.1016/j.actbio.2019.05.045
Rezvani Ghomi E, Eshkalak Saeideh K, Singh S et al (2021) Fused filament printing of specialized biomedical devices: a state-of-the art review of technological feasibilities with PEEK. Rapid Prototyping J 27(3):592–616. https://doi.org/10.1108/rpj-06-2020-0139
Stacchi C, Barlone L, Rapani A et al (2020) Modified orthodontic bone stretching for ankylosed tooth repositioning: a case report. Open Dent J 14(1):235–239. https://doi.org/10.2174/1874210602014010235
Wang C, Wang SN, Yang YY et al (2018) Bioinspired, biocompatible and peptide-decorated silk fibroin coatings for enhanced osteogenesis of bioinert implant. J Biomater Sci Polymer Ed 29(13):1595–1611. https://doi.org/10.1080/09205063.2018.1477316
Romanov DA, Sosnin KV, Filyakov AD et al (2021) The effect of bioinert electroexplosive coatings on stress distribution near the dental implant-bone interface. Mater Res Expr 8(1):015016. https://doi.org/10.1088/2053-1591/abd664
Siddiqi A, Payne AGT, De Silva RK et al (2011) Titanium allergy: could it affect dental implant integration? Clin Oral Implants Res 22(7):673–680. https://doi.org/10.1111/j.1600-0501.2010.02081.x
Wang X, Lu L, Feng Y et al (2019) Macrophage polarization in aseptic bone resorption around dental implants induced by Ti particles in a murine model. J Periodont Res 54(4):329–338. https://doi.org/10.1111/jre.12633
Civantos A, Domínguez C, Pino RJ et al (2019) Designing bioactive porous titanium interfaces to balance mechanical properties and in vitro cells behavior towards increased osseointegration. Surface Coatings Technol 368:162–174. https://doi.org/10.1016/j.surfcoat.2019.03.001
Wang Q, Zhou P, Liu SF et al (2020) Multi-scale surface treatments of titanium implants for rapid osseointegration: a review. Nanomaterials 10(6):1244. https://doi.org/10.3390/nano10061244
Taniyama T, Saruta J, Rezaei NM et al (2020) UV-photofunctionalization of titanium promotes mechanical anchorage in a rat osteoporosis model. Int J Mol Sci 21(4):1235. https://doi.org/10.3390/ijms21041235
Zhang H, Komasa S, Mashimo C et al (2017) Effect of ultraviolet treatment on bacterial attachment and osteogenic activity to alkali-treated titanium with nanonetwork structures. Int J Nanomed 12:4633. https://doi.org/10.2147/IJN.S136273
Itabashi T, Narita K, Ono A et al (2017) Bactericidal and antimicrobial effects of pure titanium and titanium alloy treated with short-term, low-energy UV irradiation. Bone Joint Res 6(2):108–112. https://doi.org/10.1302/2046-3758.62.2000619
Javadhesari SM, Alipour S, Akbarpour M (2020) Biocompatibility, osseointegration, antibacterial and mechanical properties of nanocrystalline Ti-Cu alloy as a new orthopedic material. Colloids Surfaces B Biointerf 189:110889
Bono N, Ponti F, Punta C et al (2021) Effect of UV irradiation and TiO2-photocatalysis on airborne bacteria and viruses: an overview. Materials 14(5):1075. https://doi.org/10.3390/ma14051075
Guo C, Wang K, Hou S et al (2017) H2O2 and/or TiO2 photocatalysis under UV irradiation for the removal of antibiotic resistant bacteria and their antibiotic resistance genes. J Hazardous Mater 323:710–718. https://doi.org/10.1016/j.jhazmat.2016.10.041
Chouirfa H, Bouloussa H, Migonney V et al (2019) Review of titanium surface modification techniques and coatings for antibacterial applications. Acta Biomater 83:37–54. https://doi.org/10.1016/j.actbio.2018.10.036
Sarraf M, Dabbagh A, Razak BA et al (2018) Silver oxide nanoparticles-decorated tantala nanotubes for enhanced antibacterial activity and osseointegration of Ti6Al4V. Mater Des 154:28–40. https://doi.org/10.1016/j.matdes.2018.05.025
Wang Y, Zhang MJ, Li KM et al (2021) Study on the surface properties and biocompatibility of nanosecond laser patterned titanium alloy. Optics Laser Technol 139:106987. https://doi.org/10.1016/j.optlastec.2021.106987
Taherian M, Rezazadeh M, Taji A (2021) Optimum surface roughness for titanium-coated PEEK produced by electron beam PVD for orthopedic applications. Mater Technol. https://doi.org/10.1080/10667857.2020.1868209
Hwang YJ, Choi YS, Hwang YH et al (2021) Biocompatibility and biological corrosion resistance of Ti–39Nb–6Zr+045Al implant alloy. J Funct Biomater 12(1):2. https://doi.org/10.3390/jfb12010002
Fathyunes L, Khalil-Allaf J, Moosavifa M (2019) Development of graphene oxide/calcium phosphate coating by pulse electrodeposition on anodized titanium: biocorrosion and mechanical behavior. J Mech Behav Biomed Mater 90:575–586. https://doi.org/10.1016/j.jmbbm.2018.11.011
Vogel D, Dempwolf H, Baumann A et al (2017) Characterization of thick titanium plasma spray coatings on PEEK materials used for medical implants and the influence on the mechanical properties. J Mech Behav Biomed Mater B 77:600–608. https://doi.org/10.1016/j.jmbbm.2017.09.027
Lukaszewska-Kuska M, Wirstlein P, Majchrowski R et al (2018) Osteoblastic cell behaviour on modified titanium surfaces. Micron 105:55–63. https://doi.org/10.1016/j.micron.2017.11.010
Guillem-Marti J, Boix Lemonche G, Gugutkov D et al (2018) Recombinant fibronectin fragment III8-10/polylactic acid hybrid nanofibers enhance the bioactivity of titanium surface. Nanomedicine 13(8):899–912. https://doi.org/10.2217/nnm-2017-0342
Sarraf M, Razak BA, Nasiri-Tabrizi B et al (2017) Nanomechanical properties, wear resistance and in-vitro characterization of Ta2O5 nanotubes coating on biomedical grade Ti–6Al–4V. J Mech Behav Biomed Mater 66:159–171. https://doi.org/10.1016/j.jmbbm.2016.11.012
Zhou L, Pan M, Zhang ZH et al (2021) Enhancing osseointegration of TC4 alloy by surficial activation through biomineralization method. Front Bioeng Biotechnol 9:120. https://doi.org/10.3389/fbioe.2021.639835
Sarraf M, Razak A, Crum R et al (2017) Adhesion measurement of highly-ordered TiO2 nanotubes on Ti-6Al-4V alloy. Proc Appl Ceramics 11(4):311–321. https://doi.org/10.2298/PAC1704311S
Sarraf M, Zalnezhad E, Bushroa AR et al (2015) Effect of microstructural evolution on wettability and tribological behavior of TiO2 nanotubular arrays coated on Ti–6Al–4V. Ceramics Int 41(6):7952–7962. https://doi.org/10.1016/j.ceramint.2015.02.136
Praharaj R, Mishra S, Rautray TR (2020) The structural and bioactive behaviour of strontium-doped titanium dioxide nanorods. J Korean Ceramic Soc 57(3):271–280. https://doi.org/10.1007/s43207-020-00027-y
Zalnezhad E, Maleki E, Banihashemian SM et al (2016) Wettability, structural and optical properties investigation of TiO2 nanotubular arrays. Mater Res Bull 78:179–185. https://doi.org/10.1016/j.materresbull.2016.01.035
Kunrath MF, Vargas ALM, Sesterheim P et al (2020) Extension of hydrophilicity stability by reactive plasma treatment and wet storage on TiO2 nanotube surfaces for biomedical implant applications. J Royal Soc Interf 17(170):20200650. https://doi.org/10.1098/rsif.2020.0650
Sarraf M, Razak BA, Dabbagh A et al (2016) Optimizing PVD conditions for electrochemical anodization growth of well-adherent Ta2O5 nanotubes on Ti–6Al–4V alloy. RSC Adv 6(82):78999–79015. https://doi.org/10.1039/C6RA11290K
Cui C, Liu H, Li YC et al (2015) Fabrication and biocompatibility of nano-TiO2/titanium alloys biomaterials. Mater Lett 59(24–25):3144–3148. https://doi.org/10.1016/j.matlet.2005.05.037
Smeets R, Precht C, Hahn M et al (2017) Biocompatibility and osseointegration of titanium implants with a silver-doped polysiloxane coating: an in vivo pig model. Int J Oral Maxillofac Implants 32(6):1338–1345. https://doi.org/10.11607/jomi.5533
Rashid S, Sebastiani M, Zeeshan Mughal M et al (2021) Influence of the silver content on mechanical properties of Ti-Cu-Ag thin films. Nanomaterials 11(2):435. https://doi.org/10.3390/nano11020435
Bui VD, Mwangi JW, Meinshausen AK et al (2020) Antibacterial coating of Ti-6Al-4V surfaces using silver nano-powder mixed electrical discharge machining. Surface Coatings Technol 383:125254. https://doi.org/10.1016/j.surfcoat.2019.125254
Gaviria J, Alcudia A, Begines B et al (2021) Synthesis and deposition of silver nanoparticles on porous titanium substrates for biomedical applications. Surface Coatings Technol 406:126667. https://doi.org/10.1016/j.surfcoat.2020.126667
Mandakhalikar KD, Wang R, Rahmat JN et al (2018) Restriction of in vivo infection by antifouling coating on urinary catheter with controllable and sustained silver release: a proof of concept study. BMC Infect Dis 18(1):1–9. https://doi.org/10.1186/s12879-018-3296-1
Kheur S, Singh N, Bodas D et al (2017) Nanoscale silver depositions inhibit microbial colonization and improve biocompatibility of titanium abutments. Colloids Surf B Biointerf 159:151–158. https://doi.org/10.1016/j.colsurfb.2017.07.079
Ewald A, Glückermann SK, Thull R et al (2006) Antimicrobial titanium/silver PVD coatings on titanium. Biomed Eng Online 5(1):1–10. https://doi.org/10.1186/1475-925X-5-22
Sidambe AT (2014) Biocompatibility of advanced manufactured titanium implants—a review. Mater 7(12):8168–8188. https://doi.org/10.3390/ma7128168
Jang TS, Kim DE, Han G et al (2020) Powder based additive manufacturing for biomedical application of titanium and its alloys: a review. Biomed Eng Lett 10(4):505–516. https://doi.org/10.1007/s13534-020-00177-2
Chen Y, Clark S, Sinclair L et al (2021) Synchrotron X-ray imaging of directed energy deposition additive manufacturing of titanium alloy Ti-6242. Addit Manuf 41:101969. https://doi.org/10.1016/j.addma.2021.101969
Dong Y, Li YL, Zhou SY et al (2021) Cost-affordable Ti-6Al-4V for additive manufacturing: powder modification, compositional modulation and laser in-situ alloying. Addit Manuf 37:101699. https://doi.org/10.1016/j.addma.2020.101699
Barthel B, Janas F, Wieland S (2021) Powder condition and spreading parameter impact on green and sintered density in metal binder jetting. Powder Metall. https://doi.org/10.1080/00325899.2021.1912923
Bieske J, Franke M, Schloffer M et al (2020) Microstructure and properties of TiAl processed via an electron beam powder bed fusion capsule technology. Intermetallics 126:106929. https://doi.org/10.1016/j.intermet.2020.106929
Kalayda T, Kirsankin A, Ivannikov AY et al (2021) The plasma atomization process for the Ti-Al-V powder production. J Phys Conf Ser 1942:012046
Perminov A, Bartzsch G, Franke A et al (2021) Manufacturing Fe–TiC Composite powder via inert gas atomization by forming reinforcement phase in situ. Adv Eng Mater 23(3):2000717. https://doi.org/10.1002/adem.202000717
Nie Y, Tang JJ, Ye XJ et al (2020) Particle defects and related properties of metallic powders produced by plasma rotating electrode process. Adv Powder Technol 31(7):2912–2920. https://doi.org/10.1016/j.apt.2020.05.018
Taniguchi N, Fujibayashi S, Takemoto M et al (2016) Effect of pore size on bone ingrowth into porous titanium implants fabricated by additive manufacturing: an in vivo experiment. Mater Sci Eng C Mater Biol Appl 59:690–701. https://doi.org/10.1016/j.msec.2015.10.069
Wang X, Xu SQ, Zhou SW et al (2016) Topological design and additive manufacturing of porous metals for bone scaffolds and orthopaedic implants: a review. Biomaterials 83:127–141. https://doi.org/10.1016/j.biomaterials.2016.01.012
Ragone V, Canciani E, Arosio M et al (2020) In vivo osseointegration of a randomized trabecular titanium structure obtained by an additive manufacturing technique. J Mater Sci Mater Med 31(2):1–11. https://doi.org/10.1007/s10856-019-6357-0
Barba D, Alabort E, Reed R (2019) Synthetic bone: design by additive manufacturing. Acta Biomater 97:637–656. https://doi.org/10.1016/j.actbio.2019.07.049
Egan DS, Dowling DP (2019) Influence of process parameters on the correlation between in-situ process monitoring data and the mechanical properties of Ti-6Al-4V non-stochastic cellular structures. Addit Manuf 30:100890. https://doi.org/10.1016/j.addma.2019.100890
Trevisan F, Calignano F, Aversa A et al (2018) Additive manufacturing of titanium alloys in the biomedical field: processes, properties and applications. J Appl Biomater Funct Mater 16(2):57–67. https://doi.org/10.5301/jabfm.5000371
Dhiman S, Sidhu SS, Singh P et al (2019) Mechanobiological assessment of Ti-6Al-4V fabricated via selective laser melting technique: a review. Rapid Prototyping J 25:1266–1284. https://doi.org/10.1108/RPJ-03-2019-0057
Ameen W, Al-Ahmari A, Mohammed MK et al (2018) Design, finite element analysis (FEA), and fabrication of custom titanium alloy cranial implant using electron beam melting additive manufacturing. Advn Prod Eng Manage 13(3):267–278. https://doi.org/10.14743/apem2018.3.289
He Y, Burkhalter D, Durocher D et al (2018). Solid-lattice hip prosthesis design: applying topology and lattice optimization to reduce stress shielding from hip implants. 2018 Design of Medical Devices Conference p.9–12. https://doi.org/10.1115/DMD2018-6804
Murr L (2017) Open-cellular metal implant design and fabrication for biomechanical compatibility with bone using electron beam melting. J Mech Behav Biomed Mater 76:164–177. https://doi.org/10.1016/j.jmbbm.2017.02.019
Weißmann V, Drescher P, Bader R et al (2017) Comparison of single Ti6Al4V struts made using selective laser melting and electron beam melting subject to part orientation. Metals 7(3):91. https://doi.org/10.3390/MET7030091
Soylemez E (2020) High deposition rate approach of selective laser melting through defocused single bead experiments and thermal finite element analysis for Ti-6Al-4V. Addit Manuf 31:100984. https://doi.org/10.1016/j.addma.2019.100984
Grabovetskaya GP, Stepanova EN, Mishin IP et al (2020) The effect of irradiation of a titanium alloy of the Ti–6Al–4V–H system with pulsed electron beams on its creep. Russian Phys J 63(6):932–939. https://doi.org/10.1007/s11182-020-02120-5
Adamovic D, Ristic B, Zivic F (2018). Review of existing biomaterials—method of material selection for specific applications in orthopedics. In: Zivic F, Affatato S, Trajanovic M (Eds.), Biomaterials in Clinical Practice, Springer, Cham, p.47–99. https://doi.org/10.1007/978-3-319-68025-5_3
Wang J, Li QQ, Xiong CY et al (2018) Effect of Zr on the martensitic transformation and the shape memory effect in Ti-Zr-Nb-Ta high-temperature shape memory alloys. J Alloys Compounds 737:672–677. https://doi.org/10.1016/j.jallcom.2017.12.003
Cui YW, Chen LY, Liu XX (2021) Pitting corrosion of biomedical titanium and titanium alloys: a brief review. Curr Nanosci 17(2):241–256. https://doi.org/10.2174/1573413716999201125221211
Chui P, Jing R, Zhang FG et al (2020) Mechanical properties and corrosion behavior of β-type Ti-Zr-Nb-Mo alloys for biomedical application. J Alloys Compounds 842:155693. https://doi.org/10.1016/j.jallcom.2020.155693
Tardelli JDC, Bolfarini C, Dos Reis AC (2020) Comparative analysis of corrosion resistance between beta titanium and Ti-6Al-4V alloys: a systematic review. J Trace Elements Med Biol 62:126618. https://doi.org/10.1016/j.jtemb.2020.126618
Konopatsky A, Dubinskiy SM, Zhukova YS et al (2017) Ternary Ti-Zr-Nb and quaternary Ti-Zr-Nb-Ta shape memory alloys for biomedical applications: structural features and cyclic mechanical properties. Mater Sci Eng A 702:301–311. https://doi.org/10.1016/j.msea.2017.07.046
Wei K, Wang Z, Zeng X (2018) Effect of heat treatment on microstructure and mechanical properties of the selective laser melting processed Ti-5Al-2.5 Sn α titanium alloy. Mater Sci Eng A 709:301–311. https://doi.org/10.1016/j.msea.2017.10.061
Eisenbarth E, Velten D, Müller M et al (2004) Biocompatibility of β-stabilizing elements of titanium alloys. Biomaterials 25(26):5705–5713. https://doi.org/10.1016/j.biomaterials.2004.01.021
Hsu HC, Hsu SK, Wu SC et al (2010) Structure and mechanical properties of as-cast Ti–5Nb–xFe alloys. Mater Charact 61(9):851–858. https://doi.org/10.1016/j.matchar.2010.05.003
Chen S, Tsoi JKH, Tsang PCS et al (2020) Candida albicans aspects of binary titanium alloys for biomedical applications. Regener Biomater 7(2):213–220. https://doi.org/10.1093/rb/rbz052
Iijima Y, Nagase T, Matsugaki A et al (2021) Design and development of Ti–Zr–Hf–Nb–Ta–Mo high-entropy alloys for metallic biomaterials. Mater Des 202:109548. https://doi.org/10.1016/j.matdes.2021.109548
Nagase T, Iijima Y, Matsugaki A et al (2020) Design and fabrication of Ti–Zr-Hf-Cr-Mo and Ti–Zr-Hf-Co-Cr-Mo high-entropy alloys as metallic biomaterials. Mater Sci Eng C 107:110322. https://doi.org/10.1016/j.msec.2019.110322
Park YJ, Song YH, An JH et al (2013) Cytocompatibility of pure metals and experimental binary titanium alloys for implant materials. J Dent 41(12):1251–1258. https://doi.org/10.1016/j.jdent.2013.09.003
Cremasco A, Messias AD, Esposito AR et al (2011) Effects of alloying elements on the cytotoxic response of titanium alloys. Mater Sci Eng C 31(5):833–839. https://doi.org/10.1016/j.msec.2010.12.013
Mydin R, Hazan R, FaridWajidi AF et al (2018). Titanium dioxide nanotube arrays for biomedical implant materials and nanomedicine applications. In Yang DF (Ed.), Titanium Dioxide—Material for a Sustainable Environment, p.469–483. https://doi.org/10.5772/intechopen.73060
Kafshgari MH, Goldmann WH (2020) Insights into theranostic properties of titanium dioxide for nanomedicine. Nano-Micro Lett 12(1):1–35. https://doi.org/10.1007/s40820-019-0362-1
Sarraf M, Nasiri-Tabrizi B, Yeong CH et al (2020) Mixed oxide nanotubes in nanomedicine: a dead-end or a bridge to the future? Ceram Int 47(3):2917–2948. https://doi.org/10.1016/j.ceramint.2020.09.177
Kunrath MF, Hubler R, Shinkai R et al (2018) Application of TiO2 nanotubes as a drug delivery system for biomedical implants: a critical overview. Chem Select 3(40):11180–11189. https://doi.org/10.1002/slct.201801459
Dabbagh A, Hedayatnasab Z, Karimian H et al (2019) Polyethylene glycol-coated porous magnetic nanoparticles for targeted delivery of chemotherapeutics under magnetic hyperthermia condition. Int J Hyperthermia 36(1):104–114. https://doi.org/10.1080/02656736.2018.1536809
Nancy D, Rajendran N (2018) Vancomycin incorporated chitosan/gelatin coatings coupled with TiO2–SrHAP surface modified cp-titanium for osteomyelitis treatment. Int J Biol Macromol 110:197–205. https://doi.org/10.1016/j.ijbiomac.2018.01.004
Wang Q, Huang JY, Li HQ et al (2017) Recent advances on smart TiO2 nanotube platforms for sustainable drug delivery applications. Int J Nanomed 12:151–165. https://doi.org/10.2147/IJN.S117498
Wang Q, Huang JY, Li HQ et al (2016) TiO2 nanotube platforms for smart drug delivery: a review. Int J Nanomed 11:4819–4834. https://doi.org/10.2147/IJN.S108847
Jia H, Kerr LL (2015) Kinetics of drug release from drug carrier of polymer/TiO2 nanotubes composite—pH dependent study. J Appl Polymer Sci 132(7):41570. https://doi.org/10.1002/APP.41570
Wang T, Weng ZY, Liu XM et al (2017) Controlled release and biocompatibility of polymer/titania nanotube array system on titanium implants. Bioactive Mater 2(1):44–50. https://doi.org/10.1016/j.bioactmat.2017.02.001
Ma A, You YP, Chen B et al (2020) Icariin/aspirin composite coating on TiO2 nanotubes surface induce immunomodulatory effect of macrophage and improve osteoblast activity. Coatings 10(4):427. https://doi.org/10.3390/coatings10040427
Zhang X, Zhang Y, Yates MZ (2018) Hydroxyapatite nanocrystal deposited titanium dioxide nanotubes loaded with antibiotics for combining biocompatibility and antibacterial properties. MRS Adv 3(30):1703–1709. https://doi.org/10.1557/adv.2018.114
Mesbah M, Sarraf M, Dabbagh A et al (2020) Synergistic enhancement of photocatalytic antibacterial effects in high-strength aluminum/TiO2 nanoarchitectures. Ceramics Int 46(15):24267–24280. https://doi.org/10.1016/j.ceramint.2020.06.207
Sm RB, Sreekantan S, Hazan R et al (2017) Cellular homeostasis and antioxidant response in epithelial HT29 cells on titania nanotube arrays surface. Oxid Med Cell Longevity 2017:3708048. https://doi.org/10.1155/2017/3708048
Zhang J, Li GL, Zhang XR et al (2020) Systematically evaluate the physicochemical property and hemocompatibility of phase dependent TiO2 on medical pure titanium. Surface Coatings Technol 404:126501. https://doi.org/10.1016/j.surfcoat.2020.126501
Salimi E (2019) Superhydrophobic blood-compatible surfaces: state of the art. Int J Polymeric Mater Polymeric Biomater 69(6):363–372. https://doi.org/10.1080/00914037.2019.1570510
Cao Y (2019). Engineering therapeutic biomaterials for medical implants. PhD Thesis, University of California, San Francisco, USA.
Woodbury JM (2015), Hemocompatibility of polymeric materials for blood-contacting applications. PhD Thesis, Colorado State University, USA.