A stable quasi-solid-state dye-sensitized solar cell with an amphiphilic ruthenium sensitizer and polymer gel electrolyte
Tóm tắt
Từ khóa
Tài liệu tham khảo
O'Regan, B. & Grätzel, M. A low cost, high efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353, 737–740 ( 1991).
Nazeeruddin, M.K. et al. Conversion of light to electricity by cis-X2-bis(2,2'-bipyridyl-4,4'-dicarboxalate)ruthenium(II) charge transfer sensitizers (X=Cl−, Br−, I−, CN−, and SCN−) on nanocrystalline TiO2 electrodes. J. Am. Chem. Soc. 115, 6382–6390 ( 1993).
Nazeeruddin, M.K. et al. Engineering of efficient panchromatic sensitizers for nanocrystalline TiO2-based solar cells. J. Am. Chem. Soc. 123, 1613–1624 ( 2001).
Papageogiou, N. et al. The performance and stability of ambient temperature molten salts for solar cell applications. J. Electrochem. Soc. 143, 3009–3108 ( 1996).
Kohle, O. et al. The photovoltaic stability of bis(isothiocyanato)ruthenium(II)-bis-2,2'-bipyridine-4,4'-dicarboxylic acid and related sensitizers. Adv. Mater. 9, 904–906 ( 1997).
Pettersson, H. & Gruszecki, T. Long-term stability of low-power dye-sensitised solar cells prepared by industrial methods. Solar Energy Mater. Solar Cells 70, 203–211 ( 2001).
Kern, R. et al. Long-term stability of dye-sensitized solar cells for large area power applications. Opto-Electron. Rev. 8, 284–288 ( 2001).
Hinsch, A. et al. Long-term stability of dye-sensitised solar cells. Prog. Photovoltaics 9, 425–438 ( 2001).
Pettersson, H. et al. Manufacturing method for monolithic dye-sensitized solar cells permitting long-term stable low-power modules. Solar Energy Mater. Solar Cells 77, 405–413 ( 2003).
Kay, A. & Grätzel, M. Low cost photovoltaic modules based on dye sensitized nanocrystalline titanium dioxide and carbon powder. Solar Energy Mater. Solar Cells 44, 99–117 ( 1996).
Saito, Y. et al. Application of poly(3,4-ethylenedioxythiophene) to counter electrode in dye-sensitized solar cells. Chem. Lett. 1060–1061 ( 2002).
Suzuki, K. et al. Application of carbon nanotubes to counter electrodes of dye-sensitized solar cells. Chem. Lett. 32, 28–29 ( 2003).
Oskam, G. et al. Pseudohalogens for dye-sensitized TiO2 photoelectrochemical cells. J. Phys. Chem. B 105, 6867–6873 ( 2001).
Nusbaumer, H. et al. CoII(dbbip)22+ complex rivals tri-iodide/iodide redox mediator in dye-sensitized photovoltaic cells. J. Phys. Chem. B 105, 10461–10464 ( 2001).
Sapp, S.A. et al. Substituted polypyridine complexes of cobalt(II/III) as efficient electron transfer mediators in dye-sensitized solar cells. J. Am. Chem. Soc. 124, 11215–11222 ( 2002).
Ferrere, S. & Gregg, B.A. Photosensitization of TiO2 by [FeII(2,2'-bipyridine-4,4'-dicarboxylic acid)2(CN)2]: band selective electron injection from ultra-short-lived excited states. J. Am. Chem. Soc. 120, 843–844 ( 1998).
Hou, Y.-J. et al. Influence of the attaching group and substituted position in the photosensitization behavior of ruthenium polypyridyl complexes. Inorg. Chem. 38, 6320–6322 ( 1999).
Monat, J.E. & McCusker, J.K. Femtosecond excited dynamics of an iron(II) polypyridyl solar cell sensitizer model. J. Am. Chem. Soc. 122, 4092–4097 ( 2000).
Sauvé, G. et al. Dye sensitization of nanocrystalline titanium dioxide with osmium and ruthenium polypyridyl complexes. J. Phys. Chem. B 104, 6821–6836 ( 2000).
Yanagida, M. et al. Dye-sensitized solar cells based on nanocrystalline TiO2 sensitized with a novel pyridylquinoline ruthenium(II) complex. New J. Chem. 26, 963–965 ( 2002).
Li, X. et al. New peripherally-substituted naphthalocyanines: synthesis, characterization and evaluation in dye-sensitised photoelectrochemical solar cells. New J. Chem. 26, 1076–1080 ( 2002).
He, J. et al. Modified phthalocyanines for efficient near-IR sensitisation of nanostructured TiO2 electrode. J. Am. Chem. Soc. 124, 4922–4932 ( 2002).
Hara, K. et al. Novel polyene dyes for highly efficient dye-sensitized solar cells. Chem. Commun. 252–253 ( 2003).
Kumara, G.R.A. et al. Fabrication of dye-sensitized solar cells using triethylamine hydrothiocyanate as a CuI crystal growth inhibitor. Langmuir 18, 10493–10495 ( 2002).
O'Regan, B. et al. A solid-state dye-sensitized solar cell fabricated with pressure-treated P25-TiO2 and CuSCN: analysis of pore filling and IV characteristics. Chem. Mater. 14, 5023–5029 ( 2002).
Krüger, J. et al. Improvement of the photovoltaic performance of solid-state dye-sensitized device by silver complexation of the sensitizer cis-bis(4,4 '-dicarboxy-2,2 ' bipyridine)-bis(isothiocyanato) ruthenium(II). Appl. Phys. Lett. 81, 367–369 ( 2002).
Cao, F., Oskam, G. & Searson, P.C. A solid-state, dye-sensitized photoelectrochemical cell. J. Phys. Chem. 99, 17071–17073 ( 1995).
Nogueira, A.F., Durrant, J.R. & De Paoli, M.A. Dye-sensitized nanocrystalline solar cells employing a polymer electrolyte. Adv. Mater. 13, 826–830 ( 2001).
Kubo, W. et al. Quasi-solid-state dye-sensitized solar cells using room temperature molten salts and a low molecular weight gelator. Chem. Commun. 374–375 ( 2002).
Wang, P. et al. High efficiency dye-sensitized nanocrystalline solar cells based on ionic liquid polymer gel electrolyte. Chem. Commun. 2972–2973 ( 2002).
Wang, P. et al. Gelation of ionic liquid-based electrolytes with silica nanoparticles for quasi-solid-state dye-sensitized solar cells. J. Am. Chem. Soc. 125, 1166–1167 ( 2003).
Tarascon, J.-M. & Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 414, 359–367 ( 2001).
Zakeeruddin, S.M. et al. Design, synthesis, and application of amphiphilic ruthenium polypyridyl photosensitizers in solar cells based on nanocrystalline TiO2 films. Langmuir 18, 952–954 ( 2002).
Kataoka, H. et al. Interactive effect of the polymer on carrier migration nature in the chemically cross-linked polymer gel electrolyte composed of poly(ethylene glycol) dimethacrylate. J. Phys. Chem. B 106, 12084–12087 ( 2002).
Gu, G.Y. et al. 2-Methoxyethyl (methyl) carbonate-based electrolytes for Li-ion batteries. Electrochim. Acta 45, 3127–3139 ( 2000).
Wightman, R.M & Wipf, D.O. in Electroanalytical Chemistry Vol. 15 (ed. Bard, A.J.) 283 (Marcel Dekker, New York, 1989).
Pelet, S., Moser, J.E & Grätzel, M. Cooperative effect of adsorbed cations and iodide on the interception of back electron transfer in the dye sensitization of nanocrystalline TiO2 . J. Phys. Chem. B 104, 1791–1795 ( 2000).
Haque, S. et al. Parameters influencing charge recombination kinetics in dye-sensitized nanocrystalline titanium dioxide films. J. Phys. Chem. B 104, 538–547 ( 2000).
Moser, J.E. et al. Comment on “Measurement of ultrafast photoinduced electron transfer from chemically anchored Ru-dye molecules into empty electronic states in a colloidal anatase TiO2 film”. J. Phys. Chem. B 102, 3649–3650 ( 1998).