A spectroscopic study of the excited state proton transfer processes of (8-bromo-7-hydroxyquinolin-2-yl)methyl-protected phenol in aqueous solutions
Tóm tắt
A combination of spectroscopic methods and density functional theory (DFT) computations was used to study the excited state proton transfer (ESPT) processes of (8-bromo-7-hydroxyquinolin-2-yl)methyl-protected phenol (BHQ-OPh). Characterization of the prototropic forms of BHQ-OPh in different solvent environments revealed that the neutral form predominates in acetonitrile and in 1:1 acetonitrile/water (pH 5.0), whereas the anionic form predominates in 1:1 acetonitrile/PBS (pH 7.4). Both the neutral and anionic forms were significantly populated in 1:1 acetonitrile/water. Upon irradiation in acetonitrile the triplet neutral form was observed, whereas the triplet anionic form was detected in 1:1 acetonitrile/PBS (pH 7.4). The existence of the triplet tautomeric form of BHQ-OPh in both 1:1 acetonitrile/water and 1:1 acetonitrile/water (pH 5.0), and the ESPT processes from the neutral to the anionic to the tautomeric forms in the excited state were observed using time-resolved spectroscopy. A reaction mechanism in 1:1 acetonitrile/water and 1:1 acetonitrile/water (pH 5.0) was proposed based on the spectroscopic and DFT computational results. A comparison of the results for BHQ-OPh with those of BHQ-OAc reveals that the initial prototropic states and photochemical processes are similar. The understanding gained of the initial photo-induced processes of BHQ-based photoremovable protecting groups (PPGs) is useful for the design of new quinolinyl-based PPGs for specialized applications.
Tài liệu tham khảo
J. E. T. Corrie, T. Furuta, R. Givens, A. L. Yousef, and M. Goeldner, in Dynamic Studies in Biology: Phototriggers, Photoswitches, and Caged Biomolecules, ed. M. Goeldner and R. S. Givens, Wiley-VCH, Weinheim, Germany, 2005, pp. 1–94.
G. Mayer, and A. Heckel, Biologically active molecules with a “light switch”, Angew. Chem., Int. Ed., 2006, 45, 4900–4921.
P. Klan, T. Solomek, C. G. Bochet, A. Blanc, R. Givens, M. Rubina, V. Popik, A. Kostikov, and J. Wirz, Photoremovable Protecting Groups in Chemistry and Biology: Reaction Mechanisms and Efficacy, Chem. Rev., 2013, 113, 119–191.
D. Warther, S. Gug, A. Specht, F. Bolze, J. F. Nicoud, A. Mourot, and M. Goeldner, Two-photon uncaging: New prospects in neuroscience and cellular biology, Bioorg. Med. Chem., 2010, 18, 7753–7758.
T. M. Dore, and H. C. Wilson, in Photosensitive Molecules for Controlling Biological Function, ed. J. J. Chambers and R. H. Kramer, Humana Press, New York, 2011, pp. 57–92.
G. Bort, T. Gallavardin, D. Ogden, and P. I. Dalko, From One-Photon to Two-Photon Probes: “Caged” Compounds, Actuators, and Photoswitches, Angew. Chem., Int. Ed., 2013, 52, 4526–4537.
M. J. Davis, C. H. Kragor, K. G. Reddie, H. C. Wilson, Y. Zhu, and T. M. Dore, Substituent Effects on the Sensitivity of a Quinoline Photoremovable Protecting Group to One- and Two-Photon Excitation, J. Org. Chem., 2009, 74, 1721–1729.
O. D. Fedoryak, and T. M. Dore, Brominated hydroxyquinoline as a photolabile protecting group with sensitivity to multiphoton excitation, Org. Lett., 2002, 4, 3419–3422.
Y. Zhu, C. M. Pavlos, J. P. Toscano, and T. M. Dore, 8-Bromo-7-hydroxyquinoline as a Photoremovable Protecting Group for Physiological Use: Mechanism and Scope, J. Am. Chem. Soc., 2006, 128, 4267–4276.
J. Ma, A. C. Rea, H. An, C. Ma, X. Guan, M.-D. Li, T. Su, C. S. Yeung, K. T. Harris, Y. Zhu, J. L. Nganga, O. D. Fedoryak, T. M. Dore, and D. L. Phillips, Unraveling the Mechanism of the Photodeprotection Reaction of 8-Bromo- and 8-Chloro-7-hydroxyquinoline Caged Acetates, Chem.–Eur. J., 2012, 18, 6854–6865.
X. Ouyang, I. A. Shestopalov, S. Sinha, G. Zheng, C. L. W. Pitt, W.-H. Li, A. J. Olson, and J. K. Chen, Versatile Synthesis and Rational Design of Caged Morpholinos, J. Am. Chem. Soc., 2009, 131, 13255–13269.
Y. M. Li, J. Shi, R. Cai, X. Chen, Z. F. Luo, and Q. X. Guo, New quinoline-based caging groups synthesized for photo-regulation of aptamer activity, J. Photochem. Photobiol., A., 2010, 211, 129–134.
Z. P. Zhang, Y. M. Li, X. Y. Chen, and Q. X. Guo, Photoregulation of protein plasmid expression in vitro and in vivo using BHQ caging group, Chin. Chem. Lett., 2011, 22, 338–341.
A. C. Rea, L. N. Vandenberg, R. E. Ball, A. A. Snouffer, A. G. Hudson, Y. Zhu, D. E. McLain, L. L. Johnston, J. D. Lauderdale, M. Levin, and T. M. Dore, Light Activated Serotonin for Exploring Its Action in Biological Systems, Chem. Biol., 2013, 20, 1536–1546.
L. N. Vandenberg, D. J. Blackiston, A. C. Rea, T. M. Dore, and M. Levin, Left-right patterning in Xenopus conjoined twin embryos requires serotonin signaling and gap junctions, Int. J. Dev. Biol., 2014, 58, 799–809.
D. E. McLain, A. C. Rea, M. B. Widegren, and T. M. Dore, Photoactivatable, biologically-relevant phenols with sensitivity toward 2-photon excitation, Photochem. Photobiol. Sci., 2015, 14, 2141–2158.
M. R. Loken, J. W. Hayes, J. R. Gohlke, and L. Brand, Excited-state proton transfer as a biological probe. Determination of rate constants by means of nanosecond fluorometry, Biochemistry., 1972, 11, 4779–4786.
J. Zhao, S. Ji, Y. Chen, H. Guo, and P. Yang, Excited state intramolecular proton transfer (ESIPT): from principal photophysics to the development of new chromophores and applications in fluorescent molecular probes and luminescent materials, Phys. Chem. Chem. Phys., 2012, 14, 8803–8817.
Q. Zhong, and A. W. Castleman Jr., An ultrafast glimpse of cluster solvation effects on reaction dynamics, Chem. Rev., 2000, 100, 4039–4057.
R. Casadesus, M. Moreno, and J. M. Lluch, A theoretical study of the ground and first excited singlet state proton transfer reaction in isolated 7-azaindole-water complexes, Chem. Phys., 2003, 290, 319–336.
M. L. Martinez, W. C. Cooper, and P. T. Chou, A novel excited-state intramolecular proton transfer molecule, 10-hydroxybenzo[h]quinoline, Chem. Phys. Lett., 1992, 193, 151–154.
P.-T. Chou, and C.-Y. Wei, Photophysics of 10-Hydroxybenzo[h]quinoline in Aqueous Solution, J. Phys. Chem., 1996, 100, 17059–17066.
P.-T. Chou, Y.-C. Chen, W.-S. Yu, Y.-H. Chou, C.-Y. Wei, and Y.-M. Cheng, Excited-State Intramolecular Proton Transfer in 10-Hydroxybenzo[h]quinoline, J. Phys. Chem. A., 2001, 105, 1731–1740.
H.-Y. An, C. Ma, J. L. Nganga, Y. Zhu, T. M. Dore, and D. L. Phillips, Resonance Raman Characterization of Different Forms of Ground-State 8-Bromo-7-hydroxyquinoline Caged Acetate in Aqueous Solutions, J. Phys. Chem. A., 2009, 113, 2831–2837.
J. Ma, S. C. Cheng, H. An, M.-D. Li, C. Ma, A. C. Rea, Y. Zhu, J. L. Nganga, T. M. Dore, and D. L. Phillips, Comparison of the Absorption, Emission, and Resonance Raman Spectra of 7-Hydroxyquinoline and 8-Bromo-7-Hydroxyquinoline Caged Acetate, J. Phys. Chem. A., 2011, 115, 11632–11640.
Y.-L. Li, K. H. Leung, and D. L. Phillips, Time-Resolved Resonance Raman Study of the Reaction of Isodiiodomethane with Cyclohexene: Implications for the Mechanism of Photocyclopropanation of Olefins Using Ultraviolet Photolysis of Diiodomethane, J. Phys. Chem. A., 2001, 105, 10621–10625.
J. Ma, T. Su, M.-D. Li, W. Du, J. Huang, X. Guan, and D. L. Phillips, How and When Does an Unusual and Efficient Photoredox Reaction of 2-(1-Hydroxyethyl) 9,10-Anthraquinone Occur? A Combined Time-Resolved Spectroscopic and DFT Study, J. Am. Chem. Soc., 2012, 134, 14858–14868.
J. Ma, T. Su, M.-D. Li, X. Zhang, J. Huang, and D. L. Phillips, meta versus para Substitution: How Does C-H Activation in a Methyl Group Occur in 3-Methylbenzophenone but Does Not Take Place in 4-Methylbenzophenone?, J. Org. Chem., 2013, 78, 4867–4878.
M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery Jr., J. E. Peralta, F. É. β. Ogliaro, M. J. Bearpark, J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, N. J. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox, Gaussian 09, Gaussian, Inc., Wallingford, CT, USA, 2009.
H.-Y. An, C. Ma, W. Li, K. T. Harris, T. M. Dore, and D. L. Phillips, Resonance Raman Characterization of the Different Forms of Ground-State 8-Substituted 7-Hydroxyquinoline Caged Acetate Compounds in Aqueous Solutions, J. Phys. Chem. A., 2010, 114, 2498–2505.
A. Bohra, A. Lavin, and S. Collins, Ground-State Triple Proton Transfer in 7-Hydroxyquinoline. 4. Observation in Room-Temperature Methanol and Aqueous Solutions, J. Phys. Chem., 1994, 98, 11424–11427.
Y. Han, and L. H. Spangler, Use of Isosbestic Points for Determination of Quantum Efficiency in Transient Absorption Spectroscopy, J. Phys. Chem. A., 2002, 106, 1701–1707.
S. G. Hadley, Direct determination of singlet → triplet intersystem crossing quantum yield. II. Quinoline, isoquinoline, and quinoxaline, J. Phys. Chem., 1971, 75, 2083–2086.
T. G. Kim, and M. R. Topp, Ultrafast Excited-State Deprotonation and Electron Transfer in Hydroxyquinoline Derivatives, J. Phys. Chem. A., 2004, 108, 10060–10065.
E. Bardez, A. Chatelain, B. Larrey, and B. Valeur, Photoinduced Coupled Proton and Electron Transfers. 1. 6-Hydroxyquinoline, J. Phys. Chem., 1994, 98, 2357–2366.
E. Bardez, A. Fedorov, M. N. Berberan-Santos, and J. M. G. Martinho, Photoinduced Coupled Proton and Electron Transfers. 2. 7-Hydroxyquinolinium Ion, J. Phys. Chem. A., 1999, 103, 4131–4136.
M. J. S. Dewar, and R. C. Dougherty, in The PMO Theory of Organic Chemistry, Plenum Press, New York, NY, 1975, pp. 444–445.
E. W. Driscoll, J. R. Hunt, and J. M. Dawlaty, Photobasicity in Quinolines: Origin and Tunability via the Substituents’ Hammett Parameters, J. Phys. Chem. Lett., 2016, 7, 2093–2099.