A spectroscopic approach toward depression diagnosis: local metabolism meets functional connectivity

Springer Science and Business Media LLC - Tập 267 - Trang 95-105 - 2016
Liliana Ramona Demenescu1,2, Lejla Colic1,3, Meng Li1,2, Adam Safron4, B. Biswal5, Coraline Danielle Metzger6,7,8,9, Shijia Li1,3,6,10,11, Martin Walter1,2,3,6,7,12
1Clinical Affective Neuroimaging Laboratory, Magdeburg, Germany
2Department of Neurology, Otto-von-Guericke University, Magdeburg, Germany
3Department of Behavioral Neurology, Leibniz-Institute for Neurobiology, Magdeburg, Germany
4Department of Psychology, Northwestern University, Evanston, USA
5Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, USA
6Department of Psychiatry and Psychotherapy, Otto von Guericke University of Magdeburg, Magdeburg, Germany
7Center for Behavioral Brain Sciences, Magdeburg, Germany
8Institute of Cognitive Neurology and Dementia Research (IKND), Magdeburg, Germany
9German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
10School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
11Key Laboratory of Brain Functional Genomics, Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, Shanghai, China
12Department of Psychiatry, University of Tuebingen, Tuebingen, Germany

Tóm tắt

Abnormal anterior insula (AI) response and functional connectivity (FC) is associated with depression. In addition to clinical features, such as severity, AI FC and its metabolism further predicted therapeutic response. Abnormal FC between anterior cingulate and AI covaried with reduced glutamate level within cingulate cortex. Recently, deficient glial glutamate conversion was found in AI in major depression disorder (MDD). We therefore postulate a local glutamatergic mechanism in insula cortex of depressive patients, which is correlated with symptoms severity and itself influences AI’s network connectivity in MDD. Twenty-five MDD patients and 25 healthy controls (HC) matched on age and sex underwent resting state functional magnetic resonance imaging and magnetic resonance spectroscopy scans. To determine the role of local glutamate–glutamine complex (Glx) ratio on whole brain AI FC, we conducted regression analysis with Glx relative to creatine (Cr) ratio as factor of interest and age, sex, and voxel tissue composition as nuisance factors. We found that in MDD, but not in HC, AI Glx/Cr ratio correlated positively with AI FC to right supramarginal gyrus and negatively with AI FC toward left occipital cortex (p < 0.05 family wise error). AI Glx/Cr level was negatively correlated with HAMD score (p < 0.05) in MDD patients. We showed that the local AI ratio of glutamatergic–creatine metabolism is an underlying candidate subserving functional network disintegration of insula toward low level and supramodal integration areas, in MDD. While causality cannot directly be inferred from such correlation, our finding helps to define a multilevel network of response-predicting regions based on local metabolism and connectivity strength.

Tài liệu tham khảo

Ferrari AJ, Charlson FJ, Norman RE, Patten SB, Freedman G, Murray CJ, Vos T, Whiteford HA (2013) Burden of depressive disorders by country, sex, age, and year: findings from the global burden of disease study 2010. PLOS Med. doi:10.1371/journal.pmed.1001547 Zeng LL, Shen H, Liu L, Wang L, Li B, Fang P, Zhou Z, Li Y, Hu D (2012) Identifying major depression using whole-brain functional connectivity: a multivariate pattern analysis. Brain 135:1498–1507. doi:10.1093/brain/aws059 Kaiser RH, Andrews-Hanna JR, Wager TD, Pizzagalli DA (2015) Large-scale network dysfunction in major depressive disorder a meta-analysis of resting-state functional connectivity. JAMA Psychiatry 72:603–611. doi:10.1001/jamapsychiatry.2015.0071 Mayberg HS, Liotti M, Brannan SK, McGinnis S, Mahurin RK, Jerabek PA, Silva JA, Tekell JL, Martin CC, Jl Lancaster, Fox PT (1999) Reciprocal limbic-cortical function and negative mood: converging PET findings in depression and normal sadness. Am J Psychiatry 156:675–682 Johnstone T, van Reekum CM, Urry HL, Kalin NH, Davidson RJ (2007) Failure to regulate: counterproductive recruitment of top-down prefrontal-subcortical circuitry in major depression. J Neurosci 27:8877–8884 Almeida JRC, Versace A, Mechelli A, Hassel S, Quevedo K, Kupfer DJ, Phillips ML (2009) Abnormal amygdala-prefrontal effective connectivity to happy faces differentiates bipolar from major depression. Biol Psychiatry 66:451–459 Wiebking C, De Greck M, Duncan NW, Tempelmann C, Bajbouj M, Northoff G (2015) Interoception in insula subregions as a possible state marker for depression—an exploratory fMRI study investigating healthy, depressed and remitted participants. Front Behav Neurosci. doi:10.3389/fnbeh.2015.00082 Bonelli RM, Cummings JL (2007) Frontal-subcortical circuitry and behavior. Dialog Clin Neurosci 9:141–151 Disner SG, Beevers CG, Haigh EA, Beck AT (2011) Neural mechanisms of the cognitive model of depression. Nat Rev Neurosci 12:467–477 Lui S, Wu Q, Qiu L, Yang X, Kuang W, Chan RC, Huang X, Kemp GJ, Mechelli A, Gong Q (2011) Resting-state functional connectivity in treatment-resistant depression. Am J Psychiatry 168:642–648. doi:10.1176/appi.ajp.2010.10101419 Tang Y, Kong L, Wu F, Womer F, Jiang W, Cao Y, Ren L, Wang J, Fan G, Blumberg HP, Xu K, Wang F (2013) Decreased functional connectivity between the amygdala and the left ventral prefrontal cortex in treatment-naive patients with major depressive disorder: a resting-state functional magnetic resonance imaging study. Psychol Med 43:1921–1927. doi:10.1017/S0033291712002759 Avery JA, Drevets WC, Moseman SE, Bodurka J, Barcalow JC, Simmons WK (2014) Major depressive disorder is associated with abnormal interoceptive activity and functional connectivity in the insula. Biol Psychiatry 76:258–266 Sprengelmeyer R, Steele JD, Mwangi B, Kumar P, Christmas D, Milders M, Matthews K (2011) The insular cortex and the neuroanatomy of major depression. J Affect Disord 133:120–127. doi:10.1016/j.jad.2011.04.004 Qi H, Ning Y, Li J, Guo S, Chi M, Gao M, Chi M, Gao M, Guo Y, Yang Y, Peng H, Wu K (2014) Gray matter volume abnormalities in depressive patients with and without anxiety disorders. Medicine 93:e345. doi:10.1097/MD.0000000000000345 Surguladze SA, El-Hage W, Dalgleish T, Radua J, Gohier B, Phillips ML (2010) Depression is associated with increased sensitivity to signals of disgust: a functional magnetic resonance imaging study. J Psychiatr Res 44:894–902. doi:10.1016/j.jpsychires.2010.02.010 Demenescu LR, Renken R, Kortekaas R, van Tol MJ, Marsman JBC, Van Buchem MA, van der Wee NJ, Veltman DJ, den Boer JA, Aleman A (2011) Neural correlates of perception of emotional facial expressions in out-patients with mild-to-moderate depression and anxiety. A multicenter fMRI study. Psychol Med 41:2253–2264. doi:10.1017/S0033291711000596 Hamilton JP, Etkin A, Furman DJ, Lemus MG, Johnson RF, Gotlib IH (2012) Functional neuroimaging of major depressive disorder: a meta-analysis and new integration of baseline activation and neural response data. Am J Psychiatry 169:693–703 Sliz D, Hayley S (2012) Major depressive disorder and alterations in insular cortical activity: a review of current functional magnetic imaging research. Front Hum Neurosci. doi:10.3389/fnhum.2012.00323 Fitzgerald PB, Lair AR, Maller J, Daskalakis ZJ (2008) A meta-analytic study of changes in brain activation in depression. Hum Brain Mapp 29:683–695 Yao Z, Wang L, Lu Q, Liu H, Teng G (2009) Regional homogeneity in depression and its relationship with separate depressive symptom clusters: a resting-state fMRI study. J Affect Disord 115:430–438. doi:10.1016/j.jad.2008.10.013 Liu Z, Xu C, Xu Y, Wang Y, Zhao B, Lv Y, Cao X, Zhang K, Du C (2010) Decreased regional homogeneity in insula and cerebellum: a resting-state fMRI study in patients with major depression and subjects at high risk for major depression. Psychiatry Res 182:211–215. doi:10.1016/j.pscychresns.2010.03.004 Su L, Cai Y, Xu Y, Dutt A, Shi S, Bramon E (2014) Cerebral metabolism in major depressive disorder: a voxel-based meta-analysis of positron emission tomography studies. BMC Psychiatry 14:321. doi:10.1186/s12888-014-0321-9 Veer IM, Beckmann CF, Van Tol MJ, Ferrarini L, Milles J, Veltman DJ, Aleman A, van Buchem MA, van der Wee NJ, Rombouts SARB (2010) Whole brain resting-state analysis reveals decreased functional connectivity in major depression. Front Syst Neurosci. doi:10.3389/fnsys.2010.00041 Tao H, Guo S, Ge T, Kendrick KM, Xue Z, Liu Z, Feng J (2013) Depression uncouples brain hate circuit. Mol Psychiatry 18:101–111. doi:10.1038/mp.2011.127 Crowther A, Smosk MJ, Minke J, Moor T, Gibb D, Petty C, Bizzell J, Schiller CE, Sideris J, Carl H, Dichter GS (2015) Resting-state connectivity predictors of response to psychotherapy in major depressive disorder. Neuropsychopharmacology 40:1659–1673. doi:10.1038/npp.2015.12 Craddock RC, Holtzheimer PE, Hu XP, Mayberg HS (2009) Disease state prediction from resting state functional connectivity. Magn Reson Med 62:1619–1628. doi:10.1002/mrm.22159 Lord A, Horn D, Breakspear M, Walter M (2012) Changes in community structure of resting state functional connectivity in unipolar depression. PLoS One 7(8):e41282. doi:10.1371/journal.pone.0041282 McGrath CL, Kelley ME, Holtzheimer PE, Dunlop BW, Craighead WE, Franco AR, Craddoch RC, Mayberg HS (2013) Toward a neuroimaging treatment selection biomarker for major depressive disorder. JAMA Psychiatry 70:821–829. doi:10.1001/jamapsychiatry.2013.143 Delaveau P, Jabourian M, Lemogne C, Guionnet S, Bergouignan L, Fossati P (2011) Brain effects of antidepressants in major depression: a meta-analysis of emotional processing studies. J Affect Disord 130:66–74 Opmeer EM, Kortekaas R, van Tol MJ, Renken RJ, Demenescu LR, Woudstra S, Ter Horst GJ, van Buchem MA, van der Wee NJA, Vetlman DJ, Aleman A (2016) Changes in regional brain activation related to depressive state: a 2-year longitudinal functional MRI study. Depress Anxiety 33:35–44. doi:10.1002/da.22425 Tomasi D, Wan G-J, Volkow ND (2013) Energetic cost of brain functional connectivity. PNAS 110:13642–13647. doi:10.1073/pnas.1303346110 Lord LD, Expert P, Huckins JF, Turkheimer FE (2013) Cerebral energy metabolism and the brain’s functional network architecture: an integrative review. J Cereb Blood Flow Metab 33:1347–1354. doi:10.1038/jcbfm.2013.94 Taylor MJ (2014) Could glutamate spectroscopy differentiate bipolar depression from unipolar? J Affect Disord 167:80–84. doi:10.1016/j.jad.2014.05.019 Yüksel C, Öngür D (2010) Magnetic resonance spectroscopy studies of glutamate-related abnormalities in mood disorders. Biol Psychiatry 68:785–794. doi:10.1016/j.biopsych.2010.06.016 Li M, Metzge CD, Li W, Safron A, van Tol MJ, Lord A, Krause AL, Borchardt V, Dou W, Genz A, Heinze HJ, He H, Walter M (2014) Dissociation of glutamate and cortical thickness is restricted to regions subserving trait but not state markers in major depressive disorder. J Affect Disord 169:91–100. doi:10.1016/j.jad.2014.08.001 Rajkowska G, Miguel-Hidalgo JJ (2007) Gliogenesis and glial pathology in depression. CNS Neurol Disord Drug Targets 6:219 Banasr M, Chowdhury GMI, Terwilliger R, Newton SS, Duman RS, Behar KL, Sanacora G (2010) Glial pathology in an animal model of depression: reversal of stress-induced cellular, metabolic and behavioral deficits by the glutamate-modulating drug riluzole. Mol Psychiatry 15:501–511 Maeng S, Zarate CA Jr (2007) The role of glutamate in mood disorders: results from the ketamine in major depression study and the presumed cellular mechanism underlying its antidepressant effects. Curr Psychiatry Rep 9:467–474 Salvadore G, van der Veen JW, Zhang Y, Marenco S, Machado-Vieira R, Baumann J, Ibrahim LA, Luckenbaugh DA, Shen J, Drevets WC, Zarate CA (2012) An investigation of amino-acid neurotransmitters as potential predictors of clinical improvement to ketamine in depression. Int J Neuropsychopharmacol 15:1063–1072. doi:10.1017/S1461145711001593 Brennan BP, Hudson JI, Jensen JE, McCarthy J, Roberts JL, Prescot AP, Cohen BM, Pope HG, Renshaw PF, Öngür D (2010) Rapid enhancement of glutamatergic neurotransmission in bipolar depression following treatment with riluzole. Neuropsychopharmacology 35:834–846. doi:10.1038/npp.2009.191 Bernstein HG, Meyer-Lotz G, Dobrowolny H, Bannier J, Steiner J, Walter M, Bogerts B (2015) Glutamine synthetase related astroglial abnormalities in different cortical areas in major depression but not in bipolar I disorder. Front Cell Neurosci. doi:10.3389/fncel.2015.00273 Gu X, Hof PR, Friston KJ, Fan J (2013) Anterior insular cortex and emotional awareness. J Comp Neurol 521:3371–3388 Horn DI, Yu C, Steiner J, Buchmann J, Kaufmann J, Osoba A, Eckert U, Zierhut KC, Schiltz K, He H, Biswal B, Bogerts B, Walter M (2010) Glutamatergic and resting-state functional connectivity correlates of severity in major depression–the role of pregenual anterior cingulate cortex and anterior insula. Front Syst Neurosci. doi:10.3389/fnsys.2010.00033 Wiebking C, Duncan NW, Tiret B, Hayes DJ, Marjaǹska M, Doyon J, Bajbouj M, Northoff G (2014) GABA in the insula—a predictor of the neural response to interoceptive awareness. Neuroimage 86:10–18. doi:10.1016/j.neuroimage.2013.04.042 Northoff G, Walter M, Schulte RF, Beck J, Dydak U, Henning A, Boeker H, Grimm S, Boesiger P (2007) GABA concentrations in the human anterior cingulate cortex predict negative BOLD responses in fMRI. Nat Neurosci 10:1515–1517. doi:10.1038/nn2001 Walter M, Henning A, Grimm S, Schult RF, Bec J, Dyda U, Schnepf B, Boeker H, Boesiger P, Northoff G (2009) The relationship between aberrant neuronal activation in the pregenual anterior cingulate, altered glutamatergic metabolism, and anhedonia in major depression. Arch Gen Psychiatry 66:478–486 Sheehan DV, Lecrubier Y, Sheehan KH, Amorim P, Janavs J, Weiller E, Hergueta T, Baker R, Dunbar GC (1998) The mini-international neuropsychiatric interview (MINI): the development and validation of a structured diagnostic psychiatric interview for DSM-IV and ICD-10. J Clin Psychiatry 59:22–33 CIPS (1996) Internationale Skalen für Psychiatrie. Beltz Test GmbH, Göttingen Chao-Gan Y, Yu-Feng Z (2010) DPARSF: a MATLAB toolbox for “pipeline” data analysis of resting-state fMRI. Front Syst Neurosci. doi:10.3389/fnsys.2010.00013 Song XW, Dong ZY, Long XY, Li SF, Zuo XN, Zhu CZ, He Y, Yan CG, Zang YF (2011) REST: a toolkit for resting-state functional magnetic resonance imaging data processing. PLoS One 6:e25031. doi:10.1371/journal.pone.0025031 Fox MD, Zhang D, Snyder AZ, Raichle ME (2009) The global signal and observed anticorrelated resting state brain networks. J Neurophysiol 101:3270–3283 Power JD, Mitra A, Laumann TO, Snyder AZ, Schlaggar BL, Petersen SE (2014) Methods to detect, characterize, and remove motion artifact in resting state fMRI. Neuroimage 84:320–341 Power JD, Barnes KA, Snyder AZ, Schlaggar BL, Petersen SE (2012) Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. NeuroImage 59:2142–2154. doi:10.1016/j.neuroimage.2011.10.018 Provencher SW (1993) Estimation of metabolite concentrations from localized in vivo proton NMR spectra. Magn Reson Med 30(6):672–679. doi:10.1002/mrm.1910300604 Cavassila S, Deval S, Huegen C, Van Ormondt D, Graveron-Demilly D (2001) Cramer-Rao bounds: an evaluation tool for quantitation. NMR Biomed 14:278–283. doi:10.1002/nbm.701 Soher BJ, van Zijl PC, Duyn JH, Barker PB (1996) Quantitative proton MR spectroscopic imaging of the human brain. Magn Reson Med 35:356–363 Uitenbroek DG (1997) SISA Binomial. Southampton: D.G. Uitenbroek. Retrieved January 01, 2014, from the World Wide Web: http://www.quantitativeskills.com/sisa/distributions/binomial.htm Allen PJ (2012) Creatine metabolism and psychiatric disorders: Does creatine supplementation have therapeutic value? Neurosci Biobehav Rev 36:1442–1462. doi:10.1016/j.neubiorev.2012.03.005 Frye MA, Watzl J, Banakar S, O’Neill J, Mintz J, Davanzo P, Fischer J, Chirichigno JW, Ventura J, Elman S, Tsuang J, Walot I, Tsuang J (2007) Increased anterior cingulate/medial prefrontal cortical glutamate and creatine in bipolar depression. Neuropsychopharmacology 32:2490–2499. doi:10.1038/sj.npp.1301387 Arnone D, Mumuni AN, Jauhar S, Condon B, Cavanagh J (2015) Indirect evidence of selective glial involvement in glutamate-based mechanisms of mood regulation in depression: meta-analysis of absolute prefrontal neuro-metabolic concentrations. Eur Neuropsychopharmacol 25:1109–1117. doi:10.1016/j.euroneuro.2015.04.016 Furey ML, Drevets WC, Hoffman EM, Frankel E, Speer AM, Zarate CA (2013) Potential of pretreatment neural activity in the visual cortex during emotional processing to predict treatment response to scopolamine in major depressive disorder. JAMA Psychiatry 70:280–290. doi:10.1001/2013.jamapsychiatry.60 Borchardt V, Krause AL, Starck T, Nissilä J, Timonen M, Kiviniemi V, Walter M (2015) Graph theory reveals hyper-functionality in visual cortices of seasonal affective disorder patients. World J Biol Psychiatry 16:123–134. doi:10.3109/15622975.2014.966144 Augustine JR (1996) Circuitry and functional aspects of the insular lobe in primates including humans. Brain Res Rev 22:229–244 Cerliani L, Thomas RM, Jbabdi S, Siero JCW, Nanetti L, Crippa A, Gazzola V, D’Arceuil H, Keysers C (2012) Probabilistic tractography recovers a rostrocaudal trajectory of connectivity variability in the human insular cortex. Hum Brain Mapp 33:2005–2034. doi:10.1002/hbm.21338 Menon V, Uddin LQ (2010) Saliency, switching, attention and control: a network model of insula function. Brain Struct Funct 214:655–667. doi:10.1007/s00429-010-0262-0 Uddin LQ (2014) Salience processing and insular cortical function and dysfunction. Nat Rev Neurosci 16:55–61. doi:10.1038/nrn3857 Cauda F, D’Agata F, Sacco K, Duca S, Geminiani G, Vercelli A (2011) Functional connectivity of the insula in the resting brain. Neuroimage 55:8–23 Nelson SM, Dosenbach NU, Cohen AL, Wheeler ME, Schlaggar BL, Petersen SE (2010) Role of the anterior insula in task-level control and focal attention. Brain Struct Funct 214:669–680. doi:10.1007/s00429-010-0260-2 Ai H, Opmeer EM, Veltman DJ, van der Wee NJ, van Buchem MA, Aleman A, van Tol MJ (2015) Brain activation during emotional memory processing associated with subsequent course of depression. Neuropsychopharmacology 40:2454–2463. doi:10.1038/npp.2015.96 Yuen GS, Gunning-Dixon FM, Hoptman MJ, AbdelMalak B, McGovern AR, Seirup JK, Alexopoulos GS (2014) The salience network in the apathy of late-life depression. Int J Geriatr Psychiatry 29:1116–1124. doi:10.1002/gps.4171 Mayberg HS, Lozano AM, Voon V, McNeely HE, Seminowicz D, Hamani C, Schwalb JM, Kennedy SH (2005) Deep brain stimulation for treatment-resistant depression. Neuron 45:651–660 Souery D, Oswald P, Massat I, Bailer U, Bollen J, Demyttenaere K, Kasper S, Lecrubier Y, Montgomery S, Serretti A, Zohar J, Mendlewicz J (2007) Clinical factors associated with treatment resistance in major depressive disorder: results from a European multicenter study. J Clin Psychiatry 68:1062–1070 Schubert F, Gallinat J, Seifert F, Rinneberg H (2004) Glutamate concentrations in human brain using single voxel proton magnetic resonance spectroscopy at 3 T. Neuroimage 21:1762–1771. doi:10.1016/j.neuroimage.2003.11.014 Dou W, Kaufmann J, Li M, Zhong K, Walter M, Speck O (2015) The separation of Gln and Glu in STEAM: a comparison study using short and long TEs/TMs at 3 and 7 T. Magn Reson Mater Phys Biol Med 28:395–405. doi:10.1007/s10334-014-0479-7 Dou W, Palomero-Gallagher N, van Tol M-J, Kaufmann J, Zhong K, Bernstein H-G, Heinze H-J, Speck O, Walter M (2013) Systematic regional variations of GABA, Gln and Glu concentrations follow receptor fingerprints of human cingulate cortex. J Neurosci 33:12698–12704. doi:10.1523/JNEUROSCI.1758-13.2013 van der Meer JN, Pampel A, Van Someren EJW, Ramautar JR, van der Werf YD, Gomez-Herrero G, Lepsien J, Hellrung L, Hinrichs H, Möller HE, Walter M (2016) Carbon-wire loop based artefact correction outperforms post-processing EEG/fMRI corrections—a validation of a real-time simultaneous EEG/fMRI correction method. Neuroimage 125:880–894. doi:10.1016/j.neuroimage.2015.10.064