A spatiotemporal decomposition of a fully inhomogeneous turbulent flow field
Tóm tắt
Từ khóa
Tài liệu tham khảo
Aubry, N. (1991). On the hidden beauty of the proper orthogonal decomposition, Theoret. Comput. Fluid Dynamics, 2, 339?352.
Aubry, N., Guyonnet, R., and Lima, R. (1991). Spatio-temporal analysis of complex signals: theory and applications. J. Statist. Phys., 64(3/4), 683?739.
Bakewell, H.P., and Lumley, J.L. (1967). The viscous sublayer and adjacent wall region in turbulent pipe flows. Phys. Fluids, 10, 1880?1889.
Ball, K.S., Sirovich, L., and Keefe, L.R. (1991). Dynamical eigenfunction decomposition of turbulent channel flow. Internat. J. Numer. Methods Fluids, 12, 585?604.
Berkooz, G., Holmes, P., and Lumley, J.L. (1993). The proper orthogonal decomposition in the analysis of turbulent flows. In Annual Review of Fluid Mechanics, Vol. 25. Annual Reviews Inc., Palo Alto, CA, pp. 539?575.
Chambers, D.H., Adrian, R.J., Moin, P., Stewart, D.S., and Sung, H.J. (1988). Karhunen-Loeve expansion of Burger's model of turbulence. Phys. Fluids, 31(9), 2573?2582.
Delville, J., Bellin, S., and Bonnet, J.P. (1990). Use of the proper orthogonal decomposition in a plane turbulent mixing layer. In Turbulence and Coherent Structures (O. Metais, ed.). Kluwer, Dordrecht.
Dimaczek, G., Kessler, R., Martinuzzi, R., and Tropea, C. (1989). The flow over two-dimensional, surface-mounted obstacles at high Reynolds numbers. Proc. 7th Symposium on Turbulent Shear Flows, August 21?23, Stanford University, CA, pp. 10.1/1?6.
Glauser, M.N., and George, W.K. (1987). An orthogonal decomposition of the axisymmetric jet mixing layer utilizing cross-wire velocity measurements. Proc. 6th Symposium on Turbulent Shear Flows, September 7?9, Toulouse, pp. 10.1/1?6.
Glauser, M.N., Leib, S.J., and George, W.K. (1987). Coherent structures in the axisymmetric turbulent jet mixing layer. In Turbulent Shear Flows, Vol. 5 (F. Durst et al., eds.) Springer-Verlag, Berlin, pp. 134?145.
Glezer, A., Kadioglu, Z., and Pearlstein, A.J. (1989). Development of an extended proper orthogonal decomposition and its application to a time periodically forced plane mixing layer. Phys. Fluids A, 1(8), 1363?1373.
Gresho, P.M., and Lee, R. (1981). Don't suppress the wiggles?they're telling you something. Comput. Fluids, 9, 223?253.
Herzog, S. (1986). The Large-Scale Structure in the Near-Wall Region of Turbulent Pipe Flow. Ph.D. thesis, Cornell University, Ithaca, NY.
Larousse, A., Martinuzzi, R., and Tropea, C. (1992). Flow around surface-mounted three-dimensional obstacles. In Turbulent Shear Flows, Vol. 8 (F. Durst et al., eds.) Springer-Verlag, Berlin.
Loevè, M.M. (1955). Probability Theory. Van Nostrand, New York.
Lumley, J.L. (1967). The structure of inhomogeneous turbulent flows. In Atmospheric Turbulence and Radio Wave Propagation (A.M. Yaglom and V.I. Tatarsky, eds.). Nauka, Moscow, pp. 166?178.
Lumley, J.L. (1970). Stochastic Tools in Turbulence. Academic Press, New York.
Lumley, J.L. (1981). Coherent structures in turbulence. In Transition and Turbulence (R.E. Meyer, ed.). Academic Press, New York, pp. 215?245.
Manhart, M., and Wengle, H. (1993). Eigenmode decomposition of the turbulent velocity and vorticity fields above a square rib. In Notes on Numerical Fluid Mechanics, Vol. 38 (E. Hirschel, ed.). Vieweg-Verlag, Wiesbaden, pp. 186?200
Martinuzzi, R. (1992). Experimentelle Untersuchung der Umströmung wandgebundener, rechteckiger, prismatischer Hindernisse. Doctoral thesis. Technische Universität Erlangen-Nürnberg, Erlangen (in German).
Martinuzzi, R., and Tropea, C. (1993). The flow around surface-mounted, prismatic obstacles placed in a fully developed channel flow. Trans ASME J. Fluids Engrg., 115, 85?92.
Moin, P. (1992). On the complexity of turbulence near a wall. In Studies in Turbulence (T.B. Gatski et al., eds.). Springer-Verlag, Berlin, pp. 223?228.
Moin, P., and Moser, R.D. (1989). Characteristic-eddy decomposition of turbulence in a channel. J. Fluid Mech., 200, 471?509.
Payne, F.R., and Lumley, J.L. (1967). Large eddy structure of the turbulent wake behind a circular cylinder. Phys. Fluids, 10, 194?196.
Rempfer, D. (1991). Kohärente Strukturen und Chaos beim laminar-turbulenten Grenzschichtumschlag. Doctoral thesis. Universität Stuttgart, Stuttgart (in German).
Rempfer, D., and Fasel, H. (1991). Evolution of coherent structures during transition in a flat-plate boundary layer. Proc. 8th Symposium on Turbulent Shear Flows, September 9?11, Technical University, Munich, pp. 18.3/1?6.
Ruderich, R. and Fernholz, H.H. (1986). An experimental investigation of a turbulent shear flow with separation, reverse flow, and reattachment. J. Fluid Mech., 163, 283?322.
Schumann, U. (1975). Subgrid scale model for finite difference simulations of turbulent flows in plane channels and annuli. J. Comput. Phys., 18, 36?404.
Sirovich, L. (1987). Turbulence and the dynamics of coherent structures: I, II, III, Quart. Appl. Math., 5, 561?590.
Sirovich, L., and Park, H. (1990). Turbulent thermal convection in a finite domain: Parts I and II. Phys. Fluids A, 2(9), 1649?1668.
Werner, H., and Wengle, H. (1989a). Large-eddy simulation of turbulent flow over a square rib in a channel. In Advances in Turbulence, Vol. 2 (H.H. Fernholz and H.E. Fiedler, eds.). Springer-Verlag, Berlin, pp. 418?423.
Werner, H., and Wengle, H. (1989b). Large-eddy simulation of turbulent flow over a square rib in a channel. Proc. 7th Symposium on Turbulent Shear Flows, August 21?23, Stanford University, CA, 10.2/1?6.
Werner, H., and Wengle, H. (1993). Large-eddy simulation of turbulent flow over and around a cube in a plate channel. In Turbulent Shear Flows, Vol. 8 (F. Durst et al., eds.). Springer-Verlag, Berlin, pp. 155?168.
Yee, H.C., Sweby, P.K., and Griffiths, D.F. (1991). Dynamical approach study of spurious steady-state numerical solutions of nonlinear differential equations. I. The dynamics of time discretization and its implications for algorithm development in computational fluid dynamics. J. Comput. Phys., 97, 249?310.