A spatiotemporal 3D convolutional neural network model for ENSO predictions: A test case for the 2020/21 La Niña conditions

Atmospheric and Oceanic Science Letters - Tập 16 - Trang 100330 - 2023
Lu Zhou1,2, Chuan Gao1,3, Rong-Hua Zhang4,3,2
1Key Laboratory of Ocean Circulation and Waves, Institute of Oceanology and Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
2University of Chinese Academy of Sciences, Beijing, China
3Laoshan Laboratory, Qingdao, China
4School of Marine Sciences, Nanjing University of Information Science and Technology, Nanjing, China

Tài liệu tham khảo

Bjerknes, 1969, Atmospheric teleconnections from the equatorial Pacific, Mon. Wea. Rev., 97, 163, 10.1175/1520-0493(1969)097<0163:ATFTEP>2.3.CO;2 Castro, 2021, STConvS2S: spatiotemporal convolutional sequence to sequence network for weather forecasting, Neurocomputing, 426, 285, 10.1016/j.neucom.2020.09.060 Chen, 2022, A multiscale model for El Niño complexity, NPJ Clim. Atmos. Sci., 5, 285, 10.1038/s41612-022-00241-x Chen, N., and Fang, X. 2022. A simple multiscale intermediate coupled stochastic model for El Niño diversity and complexity. doi:10.48550/arXiv.2206.06649. Eyring, 2016, Overview of the coupled model intercomparison project phase 6 (CMIP6) experimental design and organization, Geosci. Model Dev., 9, 1937, 10.5194/gmd-9-1937-2016 Fang, 2018, A three-region conceptual model for central pacific El Niño including zonal advective feedback, J. Clim., 31, 4965, 10.1175/JCLI-D-17-0633.1 Fang, 2023, Will the historic southeasterly wind over the equatorial pacific in March 2022 trigger a third-year la Niña event?, Adv. Atmos. Sci., 40, 6, 10.1007/s00376-022-2147-6 Fang, X., and Chen, N. 2022. Quantifying the predictability of ENSO complexity using a statistically accurate multiscale stochastic model and information theory. doi:10.48550/arXiv.2203.02657 Gao, 2016, Testing four dimensional variational data assimilation method using an improved intermediate coupled model for ENSO analysis and prediction, Adv. Atmos. Sci., 33, 875, 10.1007/s00376-016-5249-1 Gao, 2016, The roles of atmospheric wind and entrained water temperature (Te) in the second-year cooling of the 2010–12 La Niña event, Clim. Dyn., 48, 597 Gao, 2022, The 2020–2021 prolonged La Niña evolution in the tropical Pacific, Sci. China-Earth Sci., 65, 2248, 10.1007/s11430-022-9985-4 Ham, 2019, Deep learning for multi-year ENSO forecasts, Nature, 573, 568, 10.1038/s41586-019-1559-7 Hasan, 2022, The influence of tropical basin interactions on the 2020–2022 double-dip La Niña, Front. Clim., 4, 1001174, 10.3389/fclim.2022.1001174 Kingma, D. P., and J. Ba. 2014. Adam: a method for stochastic optimization. doi:10.48550/arXiv.1412.6980. McCreary, 1981, A linear stratified ocean model of the equatorial undercurrent, Philosoph. Trans. R. Soc. Lond. Series A, Math. Phys. Sci., 298, 603 Mu, 2021, ENSO-ASC 1.0.0: ENSO deep learning forecast model with a multivariate air–sea coupler, Geosci. Model Dev., 14, 6977, 10.5194/gmd-14-6977-2021 Song, 2022, The roles of off-equatorial subsurface cold-water incursions in triggering the second-year cooling of the la Niña event in 2021, J. Marine Sci. Eng., 10, 1667, 10.3390/jmse10111667 Tang, 2018, Progress in ENSO prediction and predictability study, Nat. Sci. Rev., 5, 826, 10.1093/nsr/nwy105 Timmermann, 2018, El Niño-Southern Oscillation complexity, Nature, 559, 535, 10.1038/s41586-018-0252-6 Zhang, 2016, The IOCAS intermediate coupled model (IOCAS ICM) and its real-time predictions of the 2015–2016 El Niño event, Sci. Bull., 61, 1061, 10.1007/s11434-016-1064-4 Zhang, 2020, A review of progress in coupled ocean-atmosphere model developments for ENSO studies in China, J. Oceanol. Limnol., 38, 930, 10.1007/s00343-020-0157-8 Zhang, 2022, Recent ENSO evolution and its real-time prediction challenges, Nat. Sci. Rev., 9, nwac052, 10.1093/nsr/nwac052 Zhang, 1998, Origin of upper-ocean warming and El Niño change on decadal scales in the tropical Pacific Ocean, Nature, 391, 879, 10.1038/36081 Zhang, 2005, An empirical parameterization of subsurface entrainment temperature for improved SST anomaly simulations in an intermediate ocean model, J. Clim., 18, 350, 10.1175/JCLI-3271.1 Zhang, 2003, A new intermediate coupled model for El Niño simulation and prediction, Geophys. Res. Lett., 30, 10.1029/2003GL018010 Zhang, 2005, Retrospective El Niño forecasts using an improved intermediate coupled model, Mon. Wea. Rev., 133, 2777, 10.1175/MWR3000.1 Zheng, 2020, Purely satellite data-driven deep learning forecast of complicated tropical instability waves, Sci. Adv., 6, eaba1482, 10.1126/sciadv.aba1482 Zhou, 2022, A Hybrid Neural Network model for ENSO prediction in combination with principal oscillation pattern analyses, Adv. Atmos. Sci., 39, 889, 10.1007/s00376-021-1368-4 Zhu, 2022, Physics-informed deep-learning parameterization of ocean vertical mixing improves climate simulations, Nat. Sci. Rev., 9, nwac044, 10.1093/nsr/nwac044