A spatio-temporal reference model of the aging brain

NeuroImage - Tập 169 - Trang 11-22 - 2018
W. Huizinga1, D.H.J. Poot1,2, M.W. Vernooij3,4, G.V. Roshchupkin1, E.E. Bron1, M.A. Ikram3,4,5, D. Rueckert6, W.J. Niessen1,2, S. Klein1
1Biomedical Imaging Group Rotterdam, Depts. of Radiology & Medical Informatics, Erasmus MC, Rotterdam, The Netherlands
2Quantitative Imaging Group, Dept. of Imaging Physics, Faculty of Applied Sciences, Delft University of Technology, Delft, The Netherlands
3Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands
4Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
5Department of Neurology, Erasmus MC, Rotterdam, The Netherlands
6Biomedical Image Analysis Group, Department of Computing, Imperial College London, United Kingdom

Tài liệu tham khảo

Achterberg, 2010, Prediction of dementia by hippocampal shape analysis, 23 Balci, 2007, Free-form B-spline deformation model for groupwise registration, 23 Baloch, 2009, Morphological appearance manifolds in computational anatomy: groupwise registration and morphological analysis, NeuroImage, 45, S73, 10.1016/j.neuroimage.2008.10.048 Bhatia, 2004, Consistent groupwise non-rigid registration for atlas construction, 908 Brewer, 2009, Fully-automated volumetric MRI with normative ranges: translation to clinical practice, Behav. Neurol., 21, 21, 10.1155/2009/616581 Bron, 2014, Diagnostic classification of arterial spin labeling and structural MRI in presenile early stage dementia, Hum. Brain Mapp., 35, 4916, 10.1002/hbm.22522 Carpenter, 2000, Bootstrap confidence intervals: when, which, what?, Statistics Med., 19, 1141, 10.1002/(SICI)1097-0258(20000515)19:9<1141::AID-SIM479>3.0.CO;2-F Cole, 1991, Smoothing reference centile curves: the LMS method and penalized likelihood, Stat. Med., 11, 1305, 10.1002/sim.4780111005 Costafreda, 2011, Automated hippocampal shape analysis predicts the onset of dementia in mild cognitive impairment, Neuroimage, 56, 212, 10.1016/j.neuroimage.2011.01.050 Cuingnet, 2011, Automatic classification of patients with Alzheimers disease from structural MRI: a comparison of ten methods using the ADNI database, NeuroImage, 56, 10.1016/j.neuroimage.2010.06.013 Davis, 2010, Population shape regression from random design data, Int. J. Comput. Vis., 90, 255, 10.1007/s11263-010-0367-1 Dittrich, 2014, A spatio-temporal latent atlas for semi-supervised learning of fetal brain segmentations and morphological age estimation, Med. Image Anal., 18, 9, 10.1016/j.media.2013.08.004 Fishbaugh, 2017, Geodesic shape regression with multiple geometries and sparse parameters, Med. Image Anal., 39, 1, 10.1016/j.media.2017.03.008 Folgoc, 2016, Quantifying registration uncertainty with sparse Bayesian modelling, IEEE Trans. Med. Imaging, 36, 607, 10.1109/TMI.2016.2623608 Gousias, 2008, Automatic segmentation of brain MRIs of 2-year-olds into 83 regions of interest, Neuroimage, 40, 672, 10.1016/j.neuroimage.2007.11.034 Hammers, 2003, Three-dimensional maximum probability atlas of the human brain, with particular reference to the temporal lobe, Hum. Brain Mapp., 19, 224, 10.1002/hbm.10123 Höskuldsson, 1988, PLS regression methods, J. Chemom., 2, 211, 10.1002/cem.1180020306 Huizinga, 2016, PCA-based groupwise image registration for quantitative MRI, Med. Image Anal., 29, 65, 10.1016/j.media.2015.12.004 Huizinga, 2016, Modeling the brain morphology distribution in the general aging population Ikram, 2015, The Rotterdam Scan Study: design update 2016 and main findings, Eur. J. Epidemiol., 30, 1299, 10.1007/s10654-015-0105-7 Jack, 2008, The Alzheimerś disease neuroimaging initiative (ADNI): MRI methods, J. Magnetic Reson. Imaging, 27, 685, 10.1002/jmri.21049 de Jong, 1992, SIMPLS: an alternative approach to partial least squares regression, Chemom. Intelligent Laboratory Syst., 18, 251, 10.1016/0169-7439(93)85002-X Klein, 2010, elastix: a toolbox for intensity based medical image registration, IEEE Trans. Med. Imaging, 29, 196, 10.1109/TMI.2009.2035616 Krishnan, 2011, Partial least squares (PLS) methods for neuroimaging: a tutorial and review, NeuroImage, 56, 455, 10.1016/j.neuroimage.2010.07.034 Kybic, 2010, Bootstrap resampling for image registration uncertainty estimation without ground truth, IEEE Trans. Image Process., 19, 64, 10.1109/TIP.2009.2030955 Marquand, 2016, Understanding heterogeneity in clinical cohort using normative models: beyond case-control studies, Biol. Psychiatry, 80, 552, 10.1016/j.biopsych.2015.12.023 Mazziotta, 2001, A probabilistic atlas and reference system for the human brain: international consortium for brain mapping (ICBM), Philosofical Trans. R. Soc. Lond., 356, 1293, 10.1098/rstb.2001.0915 Metz, 2011, Nonrigid registration of dynamic medical imaging data using nD+t B-splines and a groupwise optimization approach, Med. Image Anal., 15, 238, 10.1016/j.media.2010.10.003 de Onis, 2006 Rueckert, 1999, Nonrigid registration using free-form deformations: application to breast MR images, IEEE Trans. Med. Imaging, 18, 712, 10.1109/42.796284 Schrijvers, 2012, Is dementia incidence declining?: Trends in dementia incidence since 1990 in the Rotterdam Study, Neurology, 78, 10.1212/WNL.0b013e3182553be6 Serag, 2012, Construction of a consistent high-definition spatio-temporal atlas of the developing brain using adaptive kernel regression, NeuroImage, 59, 2255, 10.1016/j.neuroimage.2011.09.062 Singh, 2014, Quantifying anatomical shape variations in neurological disorders, Med. Image Anal., 18, 616, 10.1016/j.media.2014.01.001 Sokooti, 2016, Accuracy estimation for medical image registration using regression forests, 107 Tustison, 2010, N4ITK: improved N3 bias correction, IEEE Trans. Med. Imaging, 29, 1310, 10.1109/TMI.2010.2046908 Vernooij, 2012, Structural neuroimaging in aging and Alzheimer's disease, Neuroimaging Clin. N. Am., 22, 33, 10.1016/j.nic.2011.11.007 Wiklund, 2007, A randomization test for PLS component selection, J. Chemom., 21, 427, 10.1002/cem.1086 Wold, 2001, PLS-regression: a basic tool of chemometrics, Chemom. Intelligent Laboratory Syst., 58, 109, 10.1016/S0169-7439(01)00155-1 Yee, 2010, The VGAM package for categorical data analysis, J. Stat. Softw., 32, 1 Yeo, 2000, A new family of power transformations to improve normality or symmetry, Biometrika, 87, 954, 10.1093/biomet/87.4.954 Ziegler, 2013, Partial least squares correlation of multivariate cognitive abilities and local brain structure in children and adolescents, NeuroImage, 82, 284, 10.1016/j.neuroimage.2013.05.088 Ziegler, 2012, Models of the aging brain structure and individual decline, Front. Neuroinformatics, 6, 1, 10.3389/fninf.2012.00003 Ziegler, 2014, Individualized Gaussian process-based prediction and detection of local and global gray matter abnormalities in elderly subjects, NeuroImage, 97, 333, 10.1016/j.neuroimage.2014.04.018