A spatial randomness test based on the box-counting dimension
Tóm tắt
Từ khóa
Tài liệu tham khảo
Baddeley, A., Gregori, P., Mateu, J., Stoica, R., Stoyan, D.: Case studies in spatial point process modeling. Springer, Berlin (2006)
Baddeley, A., Turner, R., Mateu, J., Bevan, A.: Hybrids of Gibbs point process models and their implementation. J. Stat. Softw. 55(11), 1–43 (2013)
Baddeley, A., Rubak, E., Turner, R.: Spatial point patterns: methodology and applications with R. Chapman and Hall/CRC, Boca Raton (2015)
Banerjee, S., Carlin, B., Gelfand, A.: Hierarchical modeling and analysis for spatial data. CRC Press, Boca Raton (2015)
Bartlett, M.: The spectral analysis of two-dimensional point processes. Biometrika 51(3/4), 299–311 (1964)
Bivand, R., Pebesma, E., Gomez-Rubio, V.: Applied spatial data analysis with R. Springer, Berlin (2013)
Bones, C., Romani, L., de Sousa, E.: Clustering multivariate data streams by correlating attributes using fractal dimension. J. Inf. Data Manag. 7(3), 249–249 (2016)
Breslin, M., Belward, J.: Fractal dimensions for rainfall time series. Math. Comput. Simul. 48(4–6), 437–446 (1999)
Clark, P., Evans, F.: Distance to nearest neighbor as a measure of spatial relationships in populations. Ecology 35(4), 445–453 (1954)
Chhikara, B., Rathi, B., Singh, J., Poonam, F.: Corona virus SARS-CoV-2 disease COVID-19: infection, prevention and clinical advances of the prospective chemical drug therapeutics. Chem. Biol. Lett. 7(1), 63–72 (2020)
Cressie, N.: Statistics for spatial data. Wiley, Hoboken (1991)
Cuartas, et al.: SARS-coV-2 spatio-temporal analysis in Cali. Colombia. Revista de Salud Pública 22(2), 1–6 (2020)
Daley, D., Vere-Jones, D.: An introduction to the theory of point processes. Springer, Berlin (2008)
Debnath, L.: A brief historical introduction to fractals and fractal geometry. Int. J. Math. Educat. Sci. Technol. 37(1), 29–50 (2006)
Diggle, P.: Statistical analysis of spatial point patterns. Academic Press, Cambridge (1983)
Diggle, P.: Statistical analysis of spatial point patterns. Edward Arnold (2003)
Diggle, P.: Statistical analysis of spatial and spatio-temporal point patterns. CRC Press, Boca Raton (2013)
Falconer, K.: Fractal geometry: mathematical foundations and applications. Wiley, Hoboken (2004)
Foroutan-pour, K., Dutilleul, P., Smith, D.: Advances in the implementation of the box-counting method of fractal dimension estimation. Appl. Math. Comput. 105(2–3), 195–210 (1999)
García, L., Bravo, L., Collazos, P., Ramírez, O., Carrascal, E., Nuñez, M., Portilla, Millan, E.: Métodos del Registro de Cáncer en Cali. Colombia. Revista Colombia Médica 49(1), 109–120 (2018)
Illian, J., Penttinen, A., Stoyan, H., Stoyan, D.: Statistical analysis and modelling of spatial point patterns. Wiley, Hoboken (2008)
Jaquette, J., Schweinhart, B.: Fractal dimension estimation with persistent homology: a comparative study. Commun. Ecol. 84, 105163 (2013)
Kang, D., Choi, H., Kim, J., Choi, J.: Spatial epidemic dynamics of the COVID-19 outbreak in China. Int. J. Infect. Dis. 94, 96–102 (2020)
Kenkel, N.: Sample size requirements for fractal dimension estimation. Commun. Ecol. 14(2), 144–152 (2013)
Kopytov, V., Petrenko, V., Tebueva, F., Streblianskaia, N.: An improved brown’s method applying fractal dimension to forecast the load in a computing cluster for short time series. Indian J. Sci. Technol. 9(19), 93909 (2016)
Liebovitch, L., Toth, T.: A fast algorithm to determine fractal dimensions by box counting. Phys. Lett. A 141(8–9), 386–390 (1989)
Mou, D., Wang, Z.: Fractal dimension of well logging curves associated with the texture of volcanic rocks. In: 2014 international conference on mechatronics, electronic, industrial and control engineering (MEIC-14), (2014)
Mandelbrot, B.: How long is the coast of Britain? Statistical self-similarity and fractional dimension. Science 156, 636–644 (1967)
Mandelbrot, B.: The fractal geometry of nature. Freeman, New York (1982)
Miller, L., Bhattacharyya, R., Miller, A.: Spatial analysis of global variability in Covid-19 burden. Risk Manag. Healthc. Policy 13, 519–522 (2020)
Mo, D., Huang, S.: Fractal-based intrinsic dimension estimation and its application in dimensionality reduction. IEEE Trans. Knowl. Data Eng. 24(1), 59–71 (2010)
Møller, J., Waagepetersen, R.: Statistical inference and simulation for spatial point processes. Chapman and Hall/CRC, London (2004)
Plant, R.: Spatial data analysis in ecology and agriculture using R. CRC Press, London (2012)
R Core Team. (2020): R: A Language and Environment for Statistical Computing. R foundation for statistical computing, Vienna, Austria, https://www.R-project.org/
Ramírez-Aldana, R., Gomez-Verjan, J., Bello-Chavolla, O.: Spatial analysis of COVID-19 spread in Iran: insights into geographical and structural transmission determinants at a province level. PLoS Neglect. Trop. Dis. 14(1), e0008875 (2020)
Ripley, B.: Modelling spatial patterns. J. R. Stat. Soc. Ser. B 39(2), 172–192 (1977)
Salvadori, G., Ratti, S., Belli, G.: Modelling spatial patterns. Environ. Sci. Pollut. Res. 4(2), 91–98 (1997)
Schabenberger, O., Gotway, C.: Statistical methods for spatial data analysis. Chapman and Hall/CRC, London (2017)
Sheater, S.: Density estimation. Stat. Sci. 19(4), 588–597 (2004)
Tuia, D., Kanevski, M.: Environmental monitoring network characterization and clustering. Geostatistics, machine learning and Bayesian maximum entropy, advanced mapping of environmental data (2008) pp. 19–46
Vega, C., Golay, J., Kanevski, M.: Multifractal portrayal of the Swiss population. Cybergeo: Eur. J. Geogr., (2015) http://journal.openedition.org/cybergeo/26829
Vidal, E., Vieira, S., Clerici, I., Paz, A.: Fractal dimension and geostatistical parameters for soil microrelief as a function of cumulative precipitation. Scientia Agricola 67(1), 78–83 (2010)
Wiegand, T., Moloney, K.: Handbook of spatial point-pattern analysis in ecology. CRC Press, London (2013)