A spatial randomness test based on the box-counting dimension

AStA Advances in Statistical Analysis - Tập 106 Số 3 - Trang 499-524 - 2022
Yolanda Caballero1, Ramón Giraldo1, Jorge Mateu2
1Department of Statistics, Universidad Nacional de Colombia, Bogotá, Colombia
2Department of Mathematics, Universidad Jaume I, Castellón, Spain

Tóm tắt

Từ khóa


Tài liệu tham khảo

Addison, P.: Fractals and Chaos: an illustrated course. CRC Press, London (1997)

Baddeley, A., Gregori, P., Mateu, J., Stoica, R., Stoyan, D.: Case studies in spatial point process modeling. Springer, Berlin (2006)

Baddeley, A., Turner, R., Mateu, J., Bevan, A.: Hybrids of Gibbs point process models and their implementation. J. Stat. Softw. 55(11), 1–43 (2013)

Baddeley, A., Rubak, E., Turner, R.: Spatial point patterns: methodology and applications with R. Chapman and Hall/CRC, Boca Raton (2015)

Banerjee, S., Carlin, B., Gelfand, A.: Hierarchical modeling and analysis for spatial data. CRC Press, Boca Raton (2015)

Bartlett, M.: The spectral analysis of two-dimensional point processes. Biometrika 51(3/4), 299–311 (1964)

Bivand, R., Pebesma, E., Gomez-Rubio, V.: Applied spatial data analysis with R. Springer, Berlin (2013)

Bones, C., Romani, L., de Sousa, E.: Clustering multivariate data streams by correlating attributes using fractal dimension. J. Inf. Data Manag. 7(3), 249–249 (2016)

Breslin, M., Belward, J.: Fractal dimensions for rainfall time series. Math. Comput. Simul. 48(4–6), 437–446 (1999)

Clark, P., Evans, F.: Distance to nearest neighbor as a measure of spatial relationships in populations. Ecology 35(4), 445–453 (1954)

Chhikara, B., Rathi, B., Singh, J., Poonam, F.: Corona virus SARS-CoV-2 disease COVID-19: infection, prevention and clinical advances of the prospective chemical drug therapeutics. Chem. Biol. Lett. 7(1), 63–72 (2020)

Cressie, N.: Statistics for spatial data. Wiley, Hoboken (1991)

Cuartas, et al.: SARS-coV-2 spatio-temporal analysis in Cali. Colombia. Revista de Salud Pública 22(2), 1–6 (2020)

Daley, D., Vere-Jones, D.: An introduction to the theory of point processes. Springer, Berlin (2008)

Debnath, L.: A brief historical introduction to fractals and fractal geometry. Int. J. Math. Educat. Sci. Technol. 37(1), 29–50 (2006)

Diggle, P.: Statistical analysis of spatial point patterns. Academic Press, Cambridge (1983)

Diggle, P.: Statistical analysis of spatial point patterns. Edward Arnold (2003)

Diggle, P.: Statistical analysis of spatial and spatio-temporal point patterns. CRC Press, Boca Raton (2013)

Falconer, K.: Fractal geometry: mathematical foundations and applications. Wiley, Hoboken (2004)

Foroutan-pour, K., Dutilleul, P., Smith, D.: Advances in the implementation of the box-counting method of fractal dimension estimation. Appl. Math. Comput. 105(2–3), 195–210 (1999)

Gaetan, C., Guyon, X.: Spatial statistics and modeling. Springer, Berlin (2010)

García, L., Bravo, L., Collazos, P., Ramírez, O., Carrascal, E., Nuñez, M., Portilla, Millan, E.: Métodos del Registro de Cáncer en Cali. Colombia. Revista Colombia Médica 49(1), 109–120 (2018)

Illian, J., Penttinen, A., Stoyan, H., Stoyan, D.: Statistical analysis and modelling of spatial point patterns. Wiley, Hoboken (2008)

Jaquette, J., Schweinhart, B.: Fractal dimension estimation with persistent homology: a comparative study. Commun. Ecol. 84, 105163 (2013)

Kang, D., Choi, H., Kim, J., Choi, J.: Spatial epidemic dynamics of the COVID-19 outbreak in China. Int. J. Infect. Dis. 94, 96–102 (2020)

Kenkel, N.: Sample size requirements for fractal dimension estimation. Commun. Ecol. 14(2), 144–152 (2013)

Kopytov, V., Petrenko, V., Tebueva, F., Streblianskaia, N.: An improved brown’s method applying fractal dimension to forecast the load in a computing cluster for short time series. Indian J. Sci. Technol. 9(19), 93909 (2016)

Liebovitch, L., Toth, T.: A fast algorithm to determine fractal dimensions by box counting. Phys. Lett. A 141(8–9), 386–390 (1989)

Mou, D., Wang, Z.: Fractal dimension of well logging curves associated with the texture of volcanic rocks. In: 2014 international conference on mechatronics, electronic, industrial and control engineering (MEIC-14), (2014)

Mandelbrot, B.: How long is the coast of Britain? Statistical self-similarity and fractional dimension. Science 156, 636–644 (1967)

Mandelbrot, B.: The fractal geometry of nature. Freeman, New York (1982)

Miller, L., Bhattacharyya, R., Miller, A.: Spatial analysis of global variability in Covid-19 burden. Risk Manag. Healthc. Policy 13, 519–522 (2020)

Mo, D., Huang, S.: Fractal-based intrinsic dimension estimation and its application in dimensionality reduction. IEEE Trans. Knowl. Data Eng. 24(1), 59–71 (2010)

Møller, J., Waagepetersen, R.: Statistical inference and simulation for spatial point processes. Chapman and Hall/CRC, London (2004)

Plant, R.: Spatial data analysis in ecology and agriculture using R. CRC Press, London (2012)

R Core Team. (2020): R: A Language and Environment for Statistical Computing. R foundation for statistical computing, Vienna, Austria, https://www.R-project.org/

Ramírez-Aldana, R., Gomez-Verjan, J., Bello-Chavolla, O.: Spatial analysis of COVID-19 spread in Iran: insights into geographical and structural transmission determinants at a province level. PLoS Neglect. Trop. Dis. 14(1), e0008875 (2020)

Ripley, B.: Modelling spatial patterns. J. R. Stat. Soc. Ser. B 39(2), 172–192 (1977)

Ripley, B.: Spatial statistics. Wiley, Hoboken (1981)

Salvadori, G., Ratti, S., Belli, G.: Modelling spatial patterns. Environ. Sci. Pollut. Res. 4(2), 91–98 (1997)

Schabenberger, O., Gotway, C.: Statistical methods for spatial data analysis. Chapman and Hall/CRC, London (2017)

Sheater, S.: Density estimation. Stat. Sci. 19(4), 588–597 (2004)

Tuia, D., Kanevski, M.: Environmental monitoring network characterization and clustering. Geostatistics, machine learning and Bayesian maximum entropy, advanced mapping of environmental data (2008) pp. 19–46

Vega, C., Golay, J., Kanevski, M.: Multifractal portrayal of the Swiss population. Cybergeo: Eur. J. Geogr., (2015) http://journal.openedition.org/cybergeo/26829

Vidal, E., Vieira, S., Clerici, I., Paz, A.: Fractal dimension and geostatistical parameters for soil microrelief as a function of cumulative precipitation. Scientia Agricola 67(1), 78–83 (2010)

Wiegand, T., Moloney, K.: Handbook of spatial point-pattern analysis in ecology. CRC Press, London (2013)

Waagepetersen, R.P.: An estimating function approach to inference for inhomogeneous Neyman-Scott processes. Biometrics 63, 252–258 (2007)