A social network analysis approach to estimate export disruption spread in the US during the Covid-19 pandemic: how policy response and industry ties relate

Economia e Politica Industriale - Tập 50 Số 4 - Trang 943-961 - 2023
Marten Brienen1, Lixia H. Lambert2, Dayton M. Lambert2, John Schoeneman1
1Department of Global Studies, Oklahoma State University, Stillwater, OK, USA
2Department of Agricultural Economics, Oklahoma State University, Stillwater, OK, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Agrawal, N., & Pingle, S. (2020). Mitigate supply chain vulnerability to build supply chain resilience using organisational analytical capability: A theoretical framework. International Journal of Logistics Economics and Globalisation, 8(3), 272–284.

Arto, I., Andrenoi, V., & Manuel Rueda Cantuche, J. (2015). Global impacts of the automotive supply chain disruption following the Japanese earthquake of 2011. Economic Systems Research, 27(3), 306–323. https://doi.org/10.1080/09535314.2015.1034657

Baldwin, R., & Tomiura, E. (2020). Thinking ahead about the trade impact of COVID-19. Economics in the Time of COVID-19, 59, 59–71.

Barbero, J., de Lucio, J. J., & Rodríguez-Crespo, E. (2021). Effects of COVID-19 on trade flows: Measuring their impact through government policy responses. PLoS One, 16(10), e0258356

Barman, A., Das, R., & De, P. K. (2021). Impact of COVID-19 in food supply chain: Disruptions and recovery strategy. Current Research in Behavioral Sciences, 2, 100017.

Barrat, A., Barthelemy, M., Pastor-Satorras, R., & Vespignani, A. (2004). The architecture of complex weighted networks. Proceedings of the National Academy of Sciences, 101(11), 3747–3752.

Barrot, J. N., & Sauvagnat, J. (2016). Input specificity and the propagation of idiosyncratic shocks in production networks. The Quarterly Journal of Economics, 131(3), 1543–1592.

Bartik, A. W., Bertrand, M., Cullen, Z., Glaeser, E. L., Luca, M., & Stanton, C. (2020). The impact of COVID-19 on small business outcomes and expectations. Proceedings of the National Academy of Sciences, 117(30), 17656–17666.

Benguria, F. (2021). The 2020 trade collapse: Exporters amid the pandemic. Economics Letters, 205, 109961.

Butts, C. T. (2008). Social network analysis: a methodological introduction. Asian Journal of Social Psychology, 11, 13–41.

Carroll, M. C., & Blair, J. P. (2008). Local economic development: Analysis, practices, and globalization. Sage Publications.

Cerina, F., Zhu, Z., Chessa, A., & Riccaboni, M. (2015). World input–output network. PLoS One, 10(7), e0134025.

Correia, S., Luck, S., & Verner, E. (2022). Pandemics depress the economy, public interventions do not: Evidence from the 1918 flu. The Journal of Economic History, 82(4), 917–957.

Cristelli, M., Tacchella, A., & Pietronero, L. (2015). The heterogeneous dynamics of economic complexity. PLoS One. https://doi.org/10.1371/journal.pone.0117174

de Andrade, R. L., & Rêgo, L. C. (2018). The use of nodes attributes in social network analysis with an application to an international trade network. Physica A: Statistical Mechanics and its Applications, 491, 249–170.

Espitia, A., Mattoo, A., Rocha, N., Ruta, M., & Winkler, D. (2022). Pandemic trade: COVID-19, remote work and global value chains. The World Economy, 45(2), 561–589.

Guan, D., Wang, D., Hallegatte, S., Davis, S. J., Huo, J., Li, S., Bai, Y., Lei, T., Xue, Q., Cheng, C. D., Chen, D., Liang, P., Xu, X., Lu, B., Wang, X., Hubacek, S. K., & Gong, P. (2020). Global supply-chain effects of Covid-19 control measures. Nature Human Behaviour, 4, 1–11.

Hallas, L., Hatibie, A., Majumdar, S., Pyarali, M., & Hale, T. (2021). Variation in US states’ responses to covid-19. University of Oxford.

Hallikas, J., Puumalainen, K., Vesterinen, T., & Virolainen, V. M. (2005). Risk-based clas- sification of supplier relationships. Journal of Purchasing and Supply Management, 11(2–3), 72–82. https://doi.org/10.1016/j.pursup.2005.10.005.

Hayakawa, K., & Imai, K. (2022). Who sends me face masks? Evidence for the impacts of COVID-19 on international trade in medical goods. The World Economy, 45(2), 365–385.

Hayakawa, K., & Mukunoki, H. (2021). Impacts of lockdown policies on international trade. Asian Economic Papers, 20(2), 123–141.

Hidalgo, C. A., & Hausmann, R. (2008). A network view of economic development. Developing Alternatives, 12(1), 5–10.

Hidalgo, C. A., Klinger, B., Barabási, A. L., & Hausmann, R. (2007). The product space conditions the development of nations. Science, 317(5837), 482–487. https://doi.org/10.1126/science.11445

Hosseini, S., Ivanov, D., & Dolgui, A. (2019). Review of quantitative methods for supply chain resilience analysis. Transportation Research Part E: Logistics and Transportation Review, 125, 285–307.

Karwasra, K., Soni, G., Mangla, S. K., & Kazancoglu, Y. (2021). Assessing dairy supply chain vulnerability during the Covid-19 pandemic. International Journal of Logistics Research and Applications, 1–19.

Katz, D., & Kahn, R. L. (1966). The social psychology of organizations. New York: Wiley.

Kejžar, K. Z., Velić, A., & Damijan, J. P. (2022). Covid-19, trade collapse and GVC linkages: European experience. The World Economy, 45(11), 3475–3506.

Krivitsky, P. N. (2012). Exponential-family random graph models for valued networks. Electronic Journal of Statistics, 6, 1100.

Krivitsky, P. N. (2016). Ergm.count: Fit, simulate and diagnose exponential-family models for networks with count edges [R package version 3.2.2]. The Statnet Project (http://www.statnet.org). http://CRAN.R-project.org/package=ergm.count

Liuima, J. (2020). Supply chain sensitivity index: Which manufacturing industries are most vulnerable to disruption? Market Research Blog. https://blog.euromonitor.com/supply-chain-sensitivity-index-which-manufacturing-industries-are-most-vulnerable-to- disruption/

Lovrić, M., Da Re, R., Vidale, E., Pettenella, D., & Mavsar, R. (2018). Social network analysis as a tool for the analysis of international trade of wood and non-wood forest products. Forest Policy and Economics, 86, 45–66.

Mackenzie, C. A., Santos, J. R., & Barker, K. (2012). Measuring changes in international production from a disruption: case study of the Japanese earthquake and tsunami. International Journal of Production Economics, 138(2), 293–302. https://doi.org/10.1016/j.ijpe.2012.03.032.

Mallory, M. (2021). Impact of COVID-19 on Medium-term export prospects for soybeans, corn, beef, pork, and poultry. Applied Economic Policy and Perspectives, 43(1), 292–303.

Marin, D. (1992). Is the export-led growth hypothesis valid for industrialized countries? The review of economics and statistics, 74(4), 678–688.

Matias, C., & Robin, S. (2014). Modeling heterogeneity in random graphs through latent space models: A selective review. ESAIM: Proceedings and Surveys, 47, 55–74.

McNerney, J., Fath, B. D., & Silverberg, G. (2013). Network structure of inter-industry flows. Physica A: Statistical Mechanics and its Applications, 392(24), 6427–6441.

Metz, F., Leifeld, P., & Ingold, K. (2018). Interdependent policy instrument preferences: A two-mode network approach. Journal of Public Policy, 39(4), 1–28.

Norwood, F. B., & Peel, D. (2021). Supply chain mapping to prepare for future pandemics. Applied Economic Perspectives and Policy, 43(1), 412–429.

OECD (2022). International Trade during the COVID-19 pandemic: big shifts and uncertainty. 10 March 2022, https://www.oecd.org/coronavirus/policy-responses/international-trade-during-the-covid-19-pandemic-big-shifts-and-uncertainty-d1131663/

Ojha, R., Ghadge, A., Tiwari, M. K., & Bititci, U. S. (2018). Bayesian network modelling for supply chain risk propagation. International Journal of Production Research, 56(17), 5795–5819.

Pichler, A., & Doyne Farmer, J. (2022). Simultaneous supply and demand constraints in input–output networks: the case of Covid-19 in Germany, Italy, and Spain. Economic Systems Research, 34(3), 273–293. https://doi.org/10.1080/09535314.2021.1926934.

Pietronero, L., Cristelli, M., Gabrielli, A., Mazzilli, D., Pugliese, E., Tacchella, A., & Zaccaria, A. (2019). Economic complexity: “Buttarla in Caciara” VS a constructive approach. https://arxiv.org/abs/1709.05272

Pilny, A., & Atouba, Y. (2018). Modeling valued organizational communication networks using exponential random graph models. Management Communication Quarterly, 32(2), 250–264.

R Core Team (2021). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/.

Reardon, T., Bellemare, M. F., & Zilberman, D. (2020). How COVID-19 may disrupt food supply chains in developing countries. In J. Swinnen and J. McDermott (Eds.), COVID-19 and global food security, Part Five: Supply chains International Food Policy Research Institute (IFPRI). https://doi.org/10.2499/p15738coll2.133762_17

Robins, G., Lewis, J. M., & Wang, P. (2012). Statistical network analysis for analyzing policy networks. Policy Studies Journal, 40(3), 375–401.

Rose, A., & Walmsley, T. (2021). Dan Wei. Spatial transmission of the economic impacts of COVID–19 through international trade. Letters in Spatial and Resource Sciences, 14, 169–196.

Saracco, F., Straka, M. J., Di Clemente, R., Gabrielli, A., Caldarelli, G., & Squartini, T. (2017). Inferring monopartite projections of bipartite networks: an entropy-based approach. New Journal of Physics, 19(5), 053022.

Scheibe, K. P., & Blackhurst, J. (2018). Supply chain disruption propagation: a systemic risk and normal accident theory perspective. International Journal of Production Research, 56(1–2), 43–59.

Schmutzler, A. (1999). The new economic geography. Journal of Economic Surveys, 13(4), 333–502.

Schoeneman, J., Zhu, B., & Desmarais, B. A. (2022). Complex dependence in foreign direct investment: Network theory and empirical analysis. Political Science Research and Methods, 10(2), 243–259.

Sharma, S. K., Srivastava, P. R., Kumar, A., Jindal, A., & Gupta, S. (2021). Supply chain vulnerability assessment for manufacturing industry. Annals of Operations Research, 1–31.

Snijders, T. A. (2002). Markov chain Monte Carlo estimation of exponential random graph models. Journal of Social Structure, 3(2), 1–40.

Sosik, J. J., Kahai, S. S., & Piovoso, M. J. (2009). Silver bullet or voodoo statistics? A primer for using the partial least squares data analytic technique in group and organization research. Group & Organization Management, 34(1), 5–36.

Sweet, T. M. (2015). Incorporating covariates into stochastic blockmodels. Journal of Educational and Behavioral Statistics, 40(6), 635–664.

Taleb, N. N. (2014). Antifragile: Things that gain from disorder vol 3. Random House Trade Paperbacks.

Tang, C. S. (2006). Perspectives in supply chain risk management. International Journal of Production Economics, 103(2), 451–488.

Ter Wal, A. L., & Boschma, R. A. (2009). Applying social network analysis in economic geography: framing some key analytic issues. The Annals of Regional Science, 43, 739–756.

Teece, D. J. (2018). Business models and dynamic capabilities. Long Range Planning, 51(1), 40–49. https://doi.org/10.1016/j.lrp.2017.06.007.

Teece, D. J., Rumelt, R., Dosi, G., & Winter, S. (1994). Understanding corporate coherence theory and evidence. Journal of Economic Behavior and Organization, 23, 1–30.

Timmer, M. P., Dietzenbacher, E., Los, B., Stehrer, R., & De Vries, G. J. (2015). An illustrated user guide to the world input–output database: the case of global automotive production. Review of International Economics, 23(3), 575–605.

U.S. Department of Health & Human Services (USHHS). (2022). Covid-19 reported patient impact and hospital capacity by state timeseries. HealthData.gov. http://healthdata.gov. Accessed 15 Jan 2022

U.S. Census Bureau. (2022). U.S. Import and Export Merchandise Trade Statistics. USA Trade Online. https://usatrade.census.gov/. Accessed 15 Jan 2022

Wasserman, S., & Faust, K. (1994). Social network analysis: Methods and applications. Cambridge University Press.

Wichmann, B. K., & Kaufmann, L. (2016). Social network analysis in supply chain management research. International Journal of Physical Distribution & Logistics Management, 46(8), 740–762.

Windzio, M., Teney, C., & Lenkewitz, S. (2021). A network analysis of intra-EU migration flows: how regulatory policies, economic inequalities and the network-topology shape the intra-EU migration space. Journal of Ethnic and Migration Studies, 47(5), 951–969.

Wu, T., Blackhurst, J., & O’grady, P. (2007). Methodology for supply chain disruption analysis. International Journal of Production Research, 45(7), 1665–1682.

Zsidisin, G. A., Panelli, A., & Upton, R. (2000). Purchasing organization involvement in risk assessments, contingency plans, and risk management: an exploratory study. Supply Chain Management: An International Journal, 5(4), 187–198.