A snapshot of HIV-1 capsid–host interactions

Current Research in Structural Biology - Tập 2 - Trang 222-228 - 2020
Joshua Temple1, Therese N. Tripler1, Qi Shen1, Yong Xiong1
1Department of Molecular Biophysics and Biochemistry, Yale University, 266 Whitney Avenue, New Haven, CT 06511, USA

Tài liệu tham khảo

Achuthan, 2018, Capsid-CPSF6 interaction licenses nuclear HIV-1 trafficking to sites of viral DNA integration, Cell Host Microbe, 24, 392, 10.1016/j.chom.2018.08.002 Bejarano, 2019, HIV-1 nuclear import in macrophages is regulated by CPSF6-capsid interactions at the nuclear pore complex, Elife, 8, 10.7554/eLife.41800 Bhattacharya, 2014, Structural basis of HIV-1 capsid recognition by PF74 and CPSF6, Proc Natl Acad Sci U S A, 111, 18625, 10.1073/pnas.1419945112 Burdick, 2020, HIV-1 uncoats in the nucleus near sites of integration, Proc Natl Acad Sci U S A, 117, 5486, 10.1073/pnas.1920631117 Carnes, 2018, HIV-1 engages a dynein-dynactin-BICD2 complex for infection and transport to the nucleus, J Virol, 92 Carnes, 2018, Inhibitors of the HIV-1 capsid, a target of opportunity, Curr Opin HIV AIDS, 13, 359, 10.1097/COH.0000000000000472 Dharan, 2017, Bicaudal D2 facilitates the cytoplasmic trafficking and nuclear import of HIV-1 genomes during infection, Proc Natl Acad Sci U S A, 114, E10707, 10.1073/pnas.1712033114 Dick, 2018, Inositol phosphates are assembly co-factors for HIV-1, Nature, 560, 509, 10.1038/s41586-018-0396-4 Fernandez, 2019, Transportin-1 binds to the HIV-1 capsid via a nuclear localization signal and triggers uncoating, Nat Microbiol, 4, 1840, 10.1038/s41564-019-0575-6 Fribourgh, 2014, Structural insight into HIV-1 restriction by MxB, Cell Host Microbe, 16, 627, 10.1016/j.chom.2014.09.021 Fricke, 2014, MxB binds to the HIV-1 core and prevents the uncoating process of HIV-1, Retrovirology, 11, 68, 10.1186/s12977-014-0068-x Ganser-Pornillos, 2019, Restriction of HIV-1 and other retroviruses by TRIM5, Nat Rev Microbiol, 17, 546, 10.1038/s41579-019-0225-2 Goujon, 2013, Human MX2 is an interferon-induced post-entry inhibitor of HIV-1 infection, Nature, 502, 559, 10.1038/nature12542 Huang, 2019, FEZ1 is recruited to a conserved cofactor site on capsid to promote HIV-1 trafficking, Cell Rep, 28, 2373, 10.1016/j.celrep.2019.07.079 Jacques, 2016, HIV-1 uses dynamic capsid pores to import nucleotides and fuel encapsidated DNA synthesis, Nature, 536, 349, 10.1038/nature19098 Jimenez-Guardeno, 2019, Immunoproteasome activation enables human TRIM5alpha restriction of HIV-1, Nat Microbiol, 4, 933, 10.1038/s41564-019-0402-0 Kane, 2013, MX2 is an interferon-induced inhibitor of HIV-1 infection, Nature, 502, 563, 10.1038/nature12653 Kane, 2018, Nuclear pore heterogeneity influences HIV-1 infection and the antiviral activity of MX2, Elife, 7, 10.7554/eLife.35738 Lee, 2010, Flexible use of nuclear import pathways by HIV-1, Cell Host Microbe, 7, 221, 10.1016/j.chom.2010.02.007 Li, 2009, Target cell type-dependent modulation of human immunodeficiency virus type 1 capsid disassembly by cyclophilin A, J Virol, 83, 10951, 10.1128/JVI.00682-09 Liu, 2016, Cyclophilin A stabilizes the HIV-1 capsid through a novel non-canonical binding site, Nat Commun, 7, 10714, 10.1038/ncomms10714 Lu, 2020, Atomic-resolution structure of HIV-1 capsid tubes by magic-angle spinning NMR, Nat Struct Mol Biol, 27, 863, 10.1038/s41594-020-0489-2 Maertens, 2014, Structural basis for nuclear import of splicing factors by human Transportin 3, Proc Natl Acad Sci U S A, 111, 2728, 10.1073/pnas.1320755111 Malikov, 2015, HIV-1 capsids bind and exploit the kinesin-1 adaptor FEZ1 for inward movement to the nucleus, Nat Commun, 6, 6660, 10.1038/ncomms7660 Mallery, 2018, IP6 is an HIV pocket factor that prevents capsid collapse and promotes DNA synthesis, Elife, 7, 10.7554/eLife.35335 Mattei, 2016, The structure and flexibility of conical HIV-1 capsids determined within intact virions, Science, 354, 1434, 10.1126/science.aah4972 Ni, 2020, Intrinsic curvature of the HIV-1 CA hexamer underlies capsid topology and interaction with cyclophilin A, Nat Struct Mol Biol, 10.1038/s41594-020-0467-8 Ning, 2018, Truncated CPSF6 forms higher-order complexes that bind and disrupt HIV-1 capsid, J Virol, 92, 10.1128/JVI.00368-18 Peng, 2019, Functional analysis of the secondary HIV-1 capsid binding site in the host protein cyclophilin A, Retrovirology, 16, 10, 10.1186/s12977-019-0471-4 Pornillos, 2009, X-ray structures of the hexameric building block of the HIV capsid, Cell, 137, 1282, 10.1016/j.cell.2009.04.063 Price, 2014, Host cofactors and pharmacologic ligands share an essential interface in HIV-1 capsid that is lost upon disassembly, PLoS Pathog, 10, e1004459, 10.1371/journal.ppat.1004459 Schaller, 2017, Effects of inner nuclear membrane proteins SUN1/UNC-84A and SUN2/UNC-84B on the early steps of HIV-1 infection, J Virol, 91, 10.1128/JVI.00463-17 Schulte, 2015, Restriction of HIV-1 requires the N-terminal region of MxB as a capsid-binding motif but not as a nuclear localization signal, J Virol, 89, 8599, 10.1128/JVI.00753-15 Selyutina, 2020, Cyclophilin A prevents HIV-1 restriction in lymphocytes by blocking human TRIM5alpha binding to the viral core, Cell Rep, 30, 3766, 10.1016/j.celrep.2020.02.100 Skorupka, 2019, Hierarchical assembly governs TRIM5alpha recognition of HIV-1 and retroviral capsids, Sci Adv, 5, eaaw3631, 10.1126/sciadv.aaw3631 Smaga, 2019, MxB restricts HIV-1 by targeting the tri-hexamer interface of the viral capsid, Structure, 27, 1234, 10.1016/j.str.2019.04.015 Summers, 2019, Modular HIV-1 capsid assemblies reveal diverse host-capsid recognition mechanisms, Cell Host Microbe, 26, 203, 10.1016/j.chom.2019.07.007 Welker, 2000, Biochemical and structural analysis of isolated mature cores of human immunodeficiency virus type 1, J Virol, 74, 1168, 10.1128/JVI.74.3.1168-1177.2000 Xu, 2020, Permeability of the HIV-1 capsid to metabolites modulates viral DNA synthesis, bioRxiv, 2020 Yamashita, 2017, Capsid-dependent host factors in HIV-1 infection, Trends Microbiol, 25, 741, 10.1016/j.tim.2017.04.004 Yoh, 2015, PQBP1 is a proximal sensor of the cGAS-dependent innate response to HIV-1, Cell, 161, 1293, 10.1016/j.cell.2015.04.050 Yu, 2020, TRIM5alpha self-assembly and compartmentalization of the HIV-1 viral capsid, Nat Commun, 11, 1307, 10.1038/s41467-020-15106-1 Zhang, 2018, RING-domain E3 ligase-mediated host-virus interactions: orchestrating immune responses by the host and antagonizing immune defense by viruses, Front Immunol, 9, 1083, 10.3389/fimmu.2018.01083 Zhao, 2013, Mature HIV-1 capsid structure by cryo-electron microscopy and all-atom molecular dynamics, Nature, 497, 643, 10.1038/nature12162