A snapshot of HIV-1 capsid–host interactions
Tài liệu tham khảo
Achuthan, 2018, Capsid-CPSF6 interaction licenses nuclear HIV-1 trafficking to sites of viral DNA integration, Cell Host Microbe, 24, 392, 10.1016/j.chom.2018.08.002
Bejarano, 2019, HIV-1 nuclear import in macrophages is regulated by CPSF6-capsid interactions at the nuclear pore complex, Elife, 8, 10.7554/eLife.41800
Bhattacharya, 2014, Structural basis of HIV-1 capsid recognition by PF74 and CPSF6, Proc Natl Acad Sci U S A, 111, 18625, 10.1073/pnas.1419945112
Burdick, 2020, HIV-1 uncoats in the nucleus near sites of integration, Proc Natl Acad Sci U S A, 117, 5486, 10.1073/pnas.1920631117
Carnes, 2018, HIV-1 engages a dynein-dynactin-BICD2 complex for infection and transport to the nucleus, J Virol, 92
Carnes, 2018, Inhibitors of the HIV-1 capsid, a target of opportunity, Curr Opin HIV AIDS, 13, 359, 10.1097/COH.0000000000000472
Dharan, 2017, Bicaudal D2 facilitates the cytoplasmic trafficking and nuclear import of HIV-1 genomes during infection, Proc Natl Acad Sci U S A, 114, E10707, 10.1073/pnas.1712033114
Dick, 2018, Inositol phosphates are assembly co-factors for HIV-1, Nature, 560, 509, 10.1038/s41586-018-0396-4
Fernandez, 2019, Transportin-1 binds to the HIV-1 capsid via a nuclear localization signal and triggers uncoating, Nat Microbiol, 4, 1840, 10.1038/s41564-019-0575-6
Fribourgh, 2014, Structural insight into HIV-1 restriction by MxB, Cell Host Microbe, 16, 627, 10.1016/j.chom.2014.09.021
Fricke, 2014, MxB binds to the HIV-1 core and prevents the uncoating process of HIV-1, Retrovirology, 11, 68, 10.1186/s12977-014-0068-x
Ganser-Pornillos, 2019, Restriction of HIV-1 and other retroviruses by TRIM5, Nat Rev Microbiol, 17, 546, 10.1038/s41579-019-0225-2
Goujon, 2013, Human MX2 is an interferon-induced post-entry inhibitor of HIV-1 infection, Nature, 502, 559, 10.1038/nature12542
Huang, 2019, FEZ1 is recruited to a conserved cofactor site on capsid to promote HIV-1 trafficking, Cell Rep, 28, 2373, 10.1016/j.celrep.2019.07.079
Jacques, 2016, HIV-1 uses dynamic capsid pores to import nucleotides and fuel encapsidated DNA synthesis, Nature, 536, 349, 10.1038/nature19098
Jimenez-Guardeno, 2019, Immunoproteasome activation enables human TRIM5alpha restriction of HIV-1, Nat Microbiol, 4, 933, 10.1038/s41564-019-0402-0
Kane, 2013, MX2 is an interferon-induced inhibitor of HIV-1 infection, Nature, 502, 563, 10.1038/nature12653
Kane, 2018, Nuclear pore heterogeneity influences HIV-1 infection and the antiviral activity of MX2, Elife, 7, 10.7554/eLife.35738
Lee, 2010, Flexible use of nuclear import pathways by HIV-1, Cell Host Microbe, 7, 221, 10.1016/j.chom.2010.02.007
Li, 2009, Target cell type-dependent modulation of human immunodeficiency virus type 1 capsid disassembly by cyclophilin A, J Virol, 83, 10951, 10.1128/JVI.00682-09
Liu, 2016, Cyclophilin A stabilizes the HIV-1 capsid through a novel non-canonical binding site, Nat Commun, 7, 10714, 10.1038/ncomms10714
Lu, 2020, Atomic-resolution structure of HIV-1 capsid tubes by magic-angle spinning NMR, Nat Struct Mol Biol, 27, 863, 10.1038/s41594-020-0489-2
Maertens, 2014, Structural basis for nuclear import of splicing factors by human Transportin 3, Proc Natl Acad Sci U S A, 111, 2728, 10.1073/pnas.1320755111
Malikov, 2015, HIV-1 capsids bind and exploit the kinesin-1 adaptor FEZ1 for inward movement to the nucleus, Nat Commun, 6, 6660, 10.1038/ncomms7660
Mallery, 2018, IP6 is an HIV pocket factor that prevents capsid collapse and promotes DNA synthesis, Elife, 7, 10.7554/eLife.35335
Mattei, 2016, The structure and flexibility of conical HIV-1 capsids determined within intact virions, Science, 354, 1434, 10.1126/science.aah4972
Ni, 2020, Intrinsic curvature of the HIV-1 CA hexamer underlies capsid topology and interaction with cyclophilin A, Nat Struct Mol Biol, 10.1038/s41594-020-0467-8
Ning, 2018, Truncated CPSF6 forms higher-order complexes that bind and disrupt HIV-1 capsid, J Virol, 92, 10.1128/JVI.00368-18
Peng, 2019, Functional analysis of the secondary HIV-1 capsid binding site in the host protein cyclophilin A, Retrovirology, 16, 10, 10.1186/s12977-019-0471-4
Pornillos, 2009, X-ray structures of the hexameric building block of the HIV capsid, Cell, 137, 1282, 10.1016/j.cell.2009.04.063
Price, 2014, Host cofactors and pharmacologic ligands share an essential interface in HIV-1 capsid that is lost upon disassembly, PLoS Pathog, 10, e1004459, 10.1371/journal.ppat.1004459
Schaller, 2017, Effects of inner nuclear membrane proteins SUN1/UNC-84A and SUN2/UNC-84B on the early steps of HIV-1 infection, J Virol, 91, 10.1128/JVI.00463-17
Schulte, 2015, Restriction of HIV-1 requires the N-terminal region of MxB as a capsid-binding motif but not as a nuclear localization signal, J Virol, 89, 8599, 10.1128/JVI.00753-15
Selyutina, 2020, Cyclophilin A prevents HIV-1 restriction in lymphocytes by blocking human TRIM5alpha binding to the viral core, Cell Rep, 30, 3766, 10.1016/j.celrep.2020.02.100
Skorupka, 2019, Hierarchical assembly governs TRIM5alpha recognition of HIV-1 and retroviral capsids, Sci Adv, 5, eaaw3631, 10.1126/sciadv.aaw3631
Smaga, 2019, MxB restricts HIV-1 by targeting the tri-hexamer interface of the viral capsid, Structure, 27, 1234, 10.1016/j.str.2019.04.015
Summers, 2019, Modular HIV-1 capsid assemblies reveal diverse host-capsid recognition mechanisms, Cell Host Microbe, 26, 203, 10.1016/j.chom.2019.07.007
Welker, 2000, Biochemical and structural analysis of isolated mature cores of human immunodeficiency virus type 1, J Virol, 74, 1168, 10.1128/JVI.74.3.1168-1177.2000
Xu, 2020, Permeability of the HIV-1 capsid to metabolites modulates viral DNA synthesis, bioRxiv, 2020
Yamashita, 2017, Capsid-dependent host factors in HIV-1 infection, Trends Microbiol, 25, 741, 10.1016/j.tim.2017.04.004
Yoh, 2015, PQBP1 is a proximal sensor of the cGAS-dependent innate response to HIV-1, Cell, 161, 1293, 10.1016/j.cell.2015.04.050
Yu, 2020, TRIM5alpha self-assembly and compartmentalization of the HIV-1 viral capsid, Nat Commun, 11, 1307, 10.1038/s41467-020-15106-1
Zhang, 2018, RING-domain E3 ligase-mediated host-virus interactions: orchestrating immune responses by the host and antagonizing immune defense by viruses, Front Immunol, 9, 1083, 10.3389/fimmu.2018.01083
Zhao, 2013, Mature HIV-1 capsid structure by cryo-electron microscopy and all-atom molecular dynamics, Nature, 497, 643, 10.1038/nature12162
