A smoothing Newton method for the second-order cone complementarity problem

Jingyong Tang1, Guoping He2, Li Dong3, Liang Fang4, Jinchuan Zhou5
1College of Mathematics and Information Science, Xinyang Normal University, 464000, Xinyang, P.R.China
2College of Information Science and Engineering, Shandong University of Science and Technology, Qingdao, P.R. China
3College of Mathematics and Information Science, Xinyang Normal University, Xinyang, P.R. China
4College of Mathematics and Systems Science, Taishan University, Tai’an, P.R.China
5Department of Mathematics, School of Science, Shandong University of Technology, Zibo, P.R.China

Tóm tắt

Từ khóa


Tài liệu tham khảo

J. Burke, S. Xu: A non-interior predictor-corrector path-following algorithm for LCP. Reformulation: Nonsmooth, Piecewise Smooth and Smoothing Methods (M. Fukushima, L. Qi, eds.). Kluwer Academic Publishers, Boston, 1999, pp. 45–63.

J. Burke, S. Xu: A non-interior predictor-corrector path following algorithm for the monotone linear complementarity problem. Math. Program. 87 (2000), 113–130.

B. Chen, X. Chen: A global and local superlinear continuation-smoothing method for P 0 + R 0 and monotone NCP. SIAM J. Optim. 9 (1999), 624–645.

B. Chen, X. Chen: A global linear and local quadratic continuation smoothing method for variational inequalities with box constraints. Comput. Optim. Appl. 17 (2000), 131–158.

B. Chen, N. Xiu: A global linear and local quadratic noninterior continuation method for nonlinear complementarity problems based on Chen-Mangasarian smoothing functions. SIAM J. Optim. 9 (1999), 605–623.

J. Chen: A new merit function and its related properties for the second-order cone complementarity problem. Pac. J. Optim. 2 (2006), 167–179.

J. Chen, X. Chen, P. Tseng: Analysis of nonsmooth vector-valued functions associated with second-order cones. Math. Program. 101 (2004), 95–117.

J. Chen, P. Tseng: An unconstrained smooth minimization reformulation of the second-order cone complementarity problem. Math. Program. 104 (2005), 293–327.

X. D. Chen, D. Sun, J. Sun: Complementarity functions and numerical experiments on some smoothing Newton methods for second-order-cone complementarity problems. Comput. Optim. Appl. 25 (2003), 39–56.

X. N. Chi, S. Y. Liu: Analysis of a non-interior continuation method for second-order cone programming. J. Appl. Math. Comput. 27 (2008), 47–61.

X. N. Chi, S. Y. Liu: A one-step smoothing Newton method for second-order cone programming. J. Comput. Appl. Math. 223 (2009), 114–123.

X. N. Chi, S. Y. Liu: A non-interior continuation method for second-order cone programming. Optimization 58 (2009), 965–979.

F. H. Clarke: Optimization and Nonsmooth Analysis. John Wiley & Sons, New York, 1983, reprinted by SIAM, Philadelphia, 1990.

L. Fang: A new one-step smoothing Newton method for nonlinear complementarity problem with P 0-function. Appl. Math. Comput. 216 (2010), 1087–1095.

L. Fang, G. P. He, Y. H. Hu: A new smoothing Newton-type method for second-order cone programming problems. Appl. Math. Comput. 215 (2009), 1020–1029.

M. Fukushima, Z. Luo, P. Tseng: Smoothing functions for second-order-cone complementarity problems. SIAM J. Optim. 12 (2002), 436–460.

S. Hayashi, N. Yamashita, M. Fukushima: A combined smoothing and regularized method for monotone second-order cone complementarity problems. SIAM J. Optimization 15 (2005), 593–615.

Z. H. Huang, J. Y. Han, D. C. Xu, L. P. Zhang: The non-interior continuation methods for solving the P0 function nonlinear complementarity problem. Sci. China, Ser. A 44 (2001), 1107–1114.

Z. H. Huang, T. Ni: Smoothing algorithms for complementarity problems over symmetric cones. Comput. Optim. Appl. 45 (2010), 557–579.

C. Ma, X. Chen: The convergence of a one-step smoothing Newton method for P0-NCP based on a new smoothing NCP-function. J. Comput. Appl. Math. 216 (2008), 1–13.

R. Mifflin: Semismooth and semiconvex functions in constrained optimization. SIAM J. Control. Optim. 15 (1977), 957–972.

S. H. Pan, J. S. Chen: A damped Gauss-Newton method for the second-order cone complementarity problem. Appl. Math. Optim. 59 (2009), 293–318.

S. H. Pan, J. S. Chen: A linearly convergent derivative-free descent method for the second-order cone complementarity problem. Optimization 59 (2010), 1173–1197.

L. Qi: Convergence analysis of some algorithms for solving nonsmooth equations. Math. Oper. Res. 18 (1993), 227–244.

L. Qi, J. Sun: A nonsmooth version of Newton’s method. Math. Program. 58 (1993), 353–367.

L. Qi, D. Sun: Improving the convergence of non-interior point algorithm for nonlinear complementarity problems. Math. Comput. 69 (2000), 283–304.

L. Qi, D. Sun, G. Zhou: A new look at smoothing Newton methods for nonlinear complementarity problems and box constrained variational inequalities. Math. Program. 87 (2000), 1–35.

J. Y. Tang, G. P. He, L. Dong, L. Fang: A smoothing Newton method for second-order cone optimization based on a new smoothing function. Appl. Math. Comput. 218 (2011), 1317–1329.

K. C. Toh, R. H. Tütüncü, M. J. Todd: SDPT3 Version 3. 02-A MATLAB software for semidefinite-quadratic-linear programming, 2000. http://www.math.nus.edu.sg/~mattohkc/sdpt3.html .

A. Yoshise: Interior point trajectories and a homogeneous model for nonlinear complementarity problems over symmetric cones. SIAM J. Optim. 17 (2006), 1129–1153.

L. Zhang, J. Han, Z. Huang: Superlinear/quadratic one-step smoothing Newton method for P 0-NCP. Acta Math. Sin. 21 (2005), 117–128.

J. Zhang, K. Zhang: A variant smoothing Newton method for P 0-NCP based on a new smoothing function. J. Comput. Appl. Math. 225 (2009), 1–8.

G. Zhou, D. Sun, L. Qi: Numerical experiments for a class of squared smoothing Newton methods for box constrained variational inequality problems. Reformulation-Nonsmooth, Piecewise Smooth, Semismooth and Smoothing Methods (M. Fukushima, L. Qi, eds.). Kluwer Academic Publishers, Boston, 1999, pp. 421–441.