A smooth block bootstrap for quantile regression with time series
Tóm tắt
Từ khóa
Tài liệu tham khảo
[2] Buchinsky, M. (1994). Changes in the U.S. wage structure 1963–1987: Application of qunatile regression. <i>Econometrica</i> <b>62</b> 405–458.
[3] De Angelis, D., Hall, P. and Young, G. A. (1993). A note on coverage error of bootstrap confidence intervals for quantiles. <i>Math. Proc. Cambridge Philos. Soc.</i> <b>114</b> 517–531.
[4] De Angelis, D., Hall, P. and Young, G. A. (1993). Analytical and bootstrap approximations to estimator distributions in $L^{1}$ regression. <i>J. Amer. Statist. Assoc.</i> <b>88</b> 1310–1316.
[5] Doukhan, P. (1994). <i>Mixing</i>: <i>Properties and Examples. Lecture Notes in Statistics</i> <b>85</b>. Springer, New York.
[6] Engle, R. F. and Manganelli, S. (2004). CAViaR: Conditional autoregressive value at risk by regression quantiles. <i>J. Bus. Econom. Statist.</i> <b>22</b> 367–381.
[7] Feng, X., He, X. and Hu, J. (2011). Wild bootstrap for quantile regression. <i>Biometrika</i> <b>98</b> 995–999.
[8] Fitzenberger, B. (1998). The moving blocks bootstrap and robust inference for linear least squares and quantile regressions. <i>J. Econometrics</i> <b>82</b> 235–287.
[9] Gaglianone, W. P., Lima, L. R., Linton, O. and Smith, D. R. (2011). Evaluating value-at-risk models via quantile regression. <i>J. Bus. Econom. Statist.</i> <b>29</b> 150–160.
[10] Gregory, K. B., Lahiri, S. N. and Nordman, D. J. (2015). A smooth block bootstrap for statistical functionals and time series. <i>J. Time Series Anal.</i> <b>36</b> 442–461.
[11] Gregory, K. B., Lahiri, S. N. and Nordman, D. J. (2018). Supplement to “A smooth block bootstrap for quantile regression with time series.” <a href="DOI:10.1214/17-AOS1580SUPP">DOI:10.1214/17-AOS1580SUPP</a>.
[12] Gutenbrunner, C., Jurečková, J., Koenker, R. and Portnoy, S. (1993). Tests of linear hypotheses based on regression rank scores. <i>J. Nonparametr. Stat.</i> <b>2</b> 307–331.
[13] Hahn, J. (1995). Bootstrapping quantile regression estimators. <i>Econometric Theory</i> <b>11</b> 105–121.
[14] Hasan, M. N. and Koenker, R. W. (1997). Robust rank tests of the unit root hypothesis. <i>Econometrica</i> <b>65</b> 133–161.
[15] He, X., Zhu, Z.-Y. and Fung, W.-K. (2002). Estimation in a semiparametric model for longitudinal data with unspecified dependence structure. <i>Biometrika</i> <b>89</b> 579–590.
[16] Horowitz, J. L. (1998). Bootstrap methods for median regression models. <i>Econometrica</i> <b>66</b> 1327–1351.
[18] Kato, K. (2012). Asymptotic normality of Powell’s kernel estimator. <i>Ann. Inst. Statist. Math.</i> <b>64</b> 255–273.
[21] Koenker, R. and Bassett, G. Jr. (1978). Regression quantiles. <i>Econometrica</i> <b>46</b> 33–50.
[22] Künsch, H. R. (1989). The jackknife and the bootstrap for general stationary observations. <i>Ann. Statist.</i> <b>17</b> 1217–1241.
[23] Lahiri, S. N. (2002). On the jackknife-after-bootstrap method for dependent data and its consistency properties. <i>Econometric Theory</i> <b>18</b> 79–98.
[25] Lahiri, S. N., Furukawa, K. and Lee, Y.-D. (2007). A nonparametric plug-in rule for selecting optimal block lengths for block bootstrap methods. <i>Stat. Methodol.</i> <b>4</b> 292–321.
[27] Paparoditis, E. and Politis, D. N. (2001). Tapered block bootstrap. <i>Biometrika</i> <b>88</b> 1105–1119.
[28] Parzen, M. I., Wei, L. J. and Ying, Z. (1994). A resampling method based on pivotal estimating functions. <i>Biometrika</i> <b>81</b> 341–350.
[29] Pollard, D. (1985). New ways to prove central limit theorems. <i>Econometric Theory</i> <b>1</b> 295–313.
[32] Shao, X. (2010). Extended tapered block bootstrap. <i>Statist. Sinica</i> <b>20</b> 807–821.
[33] Sheather, S. J. and Jones, M. C. (1991). A reliable data-based bandwidth selection method for kernel density estimation. <i>J. R. Stat. Soc. Ser. B. Stat. Methodol.</i> <b>53</b> 683–690.
[35] Umantsev, L. and Chernozhukov, V. (2001). Conditional value-at-risk: Aspects of modeling and estimation. <i>Empir. Econom.</i> <b>26</b> 271–292.
[36] van den Goorbergh, R. W. J. and Vlaar, P. J. G. (1999). Value-at-risk analysis of stock returns historical simulation, variance techniques or tail index estimation? DNB Staff Reports (discontinued) No. 40, Netherlands Central Bank. Available at <a href="http://ideas.repec.org/p/dnb/staffs/40.html">http://ideas.repec.org/p/dnb/staffs/40.html</a>.
[37] Weiss, A. A. (1991). Estimating nonlinear dynamic models using least absolute error estimation. <i>Econometric Theory</i> <b>7</b> 46–68.
[38] Zhou, Z. and Shao, X. (2013). Inference for linear models with dependent errors. <i>J. R. Stat. Soc. Ser. B. Stat. Methodol.</i> <b>75</b> 323–343.
[31] Serfling, R. J. (1980). <i>Approximation Theorems of Mathematical Statistics</i>. Wiley, New York.
[1] Arcones, M. A. and Giné, E. (1992). On the bootstrap of $M$-estimators and other statistical functionals. In <i>Exploring the Limits of Bootstrap</i> (<i>East Lansing</i>, <i>MI</i>, 1990) (R. LePage and L. Billard, eds.) 13–47. Wiley, New York.
[17] Huber, P. J. (1967). The behavior of maximum likelihood estimates under nonstandard conditions. In <i>Proc. Fifth Berkeley Sympos. Math. Statist. and Probability</i> (<i>Berkeley</i>, <i>Calif.</i>, 1965<i>/</i>66), <i>Vol. I</i>: <i>Statistics</i> 221–233. Univ. California Press, Berkeley, CA.
[19] Koenker, R. (1994). Confidence intervals for regression quantiles. In <i>Asymptotic Statistics</i> (<i>Prague</i>, 1993) (P. Mandl and M. Hušková, eds.) 349–359. Physica, Heidelberg.
[20] Koenker, R. (2013). quantreg: Quantile regression. R package version 5.05.
[26] Liu, R. Y. and Singh, K. (1992). Moving blocks jackknife and bootstrap capture weak dependence. In <i>Exploring the Limits of Bootstrap</i> (<i>East Lansing</i>, <i>MI</i>, 1990) 225–248. Wiley, New York.
[30] Powell, J. L. (1991). Estimation of monotonic regression models under quantile restrictions. In <i>Nonparametric and Semiparametric Methods in Econometrics and Statistics</i> (<i>Durham</i>, <i>NC</i>, 1988) 357–384. Cambridge Univ. Press, Cambridge.
[34] Stoffer, D. (2014). astsa: Applied statistical time series analysis. R package version 1.3.