A single functional model of drivers and modulators in cortex
Tóm tắt
A distinction is commonly made between synaptic connections capable of evoking a response (“drivers”) and those that can alter ongoing activity but not initiate it (“modulators”). Here it is proposed that, in cortex, both drivers and modulators are an emergent property of the perceptual inference performed by cortical circuits. Hence, it is proposed that there is a single underlying computational explanation for both forms of synaptic connection. This idea is illustrated using a predictive coding model of cortical perceptual inference. In this model all synaptic inputs are treated identically. However, functionally, certain synaptic inputs drive neural responses while others have a modulatory influence. This model is shown to account for driving and modulatory influences in bottom-up, lateral, and top-down pathways, and is used to simulate a wide range of neurophysiological phenomena including surround suppression, contour integration, gain modulation, spatio-temporal prediction, and attention. The proposed computational model thus provides a single functional explanation for drivers and modulators and a unified account of a diverse range of neurophysiological data.
Tài liệu tham khảo
Abbott, L.F., & Chance, F.S. (2005). Drivers and modulators from push-pull and balanced synaptic input. Progress in Brain Research, 149, 147–155.
Achler, T., & Amir, E. (2008). Input feedback networks: classification and inference based on network structure. In P. Wang, B. Goertzel, S. Franklin (Eds.), Artificial general intelligence (pp. 15–26). Amsterdam: IOS Press.
Adelson, E., & Bergen, J. (1985). Spatiotemporal energy models for the perception of motion. Journal of the Optical Society of America. A, Optics, Image Science, and Vision, 2, 284–299.
Andersen, R.A., Essick, G.K., Siegel, R.M. (1985). Encoding of spatial location by posterior parietal neurons. Science, 230(4724), 456–458.
Andersen, R.A., & Mountcastle, V.B. (1983). The influence of the angle of gaze upon the excitability of the light-sensitive neurons of the posterior parietal cortex. Journal of Neuroscience, 3(3), 532–548.
Angelucci, A., & Bressloff, P.C. (2006). Contribution of feedforward, lateral and feedback connections to the classical receptive field center and extra-classical receptive field surround of primate V1 neurons. Progress in Brain Research, 154, 93–120.
Angelucci, A., & Bullier, J. (2003). Reaching beyond the classical receptive field of V1 neurons: horizontal or feedback axons?Journal of Physiology, Paris, 97(2–3), 141–154.
Baker, P.M., & Bair, W. (2012). Inter-neuronal correlation distinguishes mechanisms of direction selectivity in cortical circuit models. Journal of Neuroscience, 32(26), 8800–8816.
Balkenius, C. (1995). Multi-modal sensing for robot control. In L.F. Niklasson, & M.B. Bodén (Eds.), Current trends in connectionism (pp. 203–16). Hillsdale: Lawrence Erlbaum.
Barlow, H.B. (1994). What is the computational goal of the neocortex? In C. Koch & J.L. Davis (Eds.), Large-scale neuronal theories of the brain (Chap. 1, pp. 1–22). Cambridge: MIT Press.
Barlow, H.B., & Levick, W.R. (1965). The mechanism of directionally selective units in rabbit’s retina. Journal of Physiology (London), 178(3), 477–504.
Ben-Shahar, O., & Zucker, S.W. (2004). Geometrical computations explain projection patterns of long range horizontal connections in visual cortex. Neural Computation, 16(3), 445–476.
Braun, J. (1999). On the detection of salient contours. Spatial Vision, 12(2), 211–225.
Bremmer, F., Distler, C., Hoffmann, K.P. (1997). Eye position effects in monkey cortex. II. pursuit- and fixation-related activity in posterior parietal areas LIP and 7a. Journal of Neurophysiology, 77(2), 962–977.
Brotchie, P.R., Andersen, R.A., Snyder, L.H., Goodman, S.J. (1995). Head position signals used by parietal neurons to encode locations of visual stimuli. Nature, 375(6528), 232–235.
Brozović, M., Abbott, L.F., Andersen, R.A. (2008). Mechanism of gain modulation at single neuron and network levels. Journal of Computational Neuroscience, 25, 158–168.
Buffalo, E.A., Fries, P., Landman, R., Liang, H., Desimone, R. (2010). A backward progression of attentional effects in the ventral stream. Proceedings of the National Academy of Sciences, 107(1), 361–365.
Chang, S.W., & Snyder, L.H. (2010). Idiosyncratic and systematic aspects of spatial representations in the macaque parietal cortex. Proceedings of the National Academy of Sciences of the United States of America, 107, 7951–7956.
Chelazzi, L., Miller, E.K., Duncan, J., Desimone, R. (2001). Responses of neurons in macaque area V4 during memory-guided visual search. Cerebral Cortex, 11(8), 761–772.
Chen, C.C., Kasamatsu, T., Polat, U., Norcia, A.M. (2001). Contrast response characteristics of long-range lateral interactions in cat striate cortex. Neuroreport, 12(4), 655–661.
Corbetta, M., & Shulman, G.L. (2002). Control of goal-directed and stimulus-driven attention in the brain. Nature Reviews Neuroscience, 3(3), 201–215.
Covic, E.N., & Sherman, S.M. (2011). Synaptic properties of connections between the primary and secondary auditory cortices in mice. Cerebral Cortex, 21(11), 2425–2441.
Craft, E., Schütze, H., Niebur, E., von der Heydt, R. (2007). A neural model of figure-ground organization. Journal of Neurophysiology, 97, 4310–4326.
Crick, F., & Koch, C. (1998). Constraints on cortical and thalamic projections: the no-strong-loops hypothesis. Nature, 391, 245–250.
Dakin, S.C., & Baruch, N.J. (2009). Context influences contour integration. Journal of Vision, 9(2), 1–13.
Dakin, S.C., & Hess, R.F. (1998). Spatial-frequency tuning of visual contour integration. Journal of the Optical Society of America. A, Optics, Image Science, and Vision, 15(6), 1486–1499.
De Meyer, K., & Spratling, M.W. (2009). A model of non-linear interactions between cortical top-down and horizontal connections explains the attentional gating of collinear facilitation. Vision Research, 49(5), 553–568.
De Meyer, K., & Spratling, M.W. (2011). Multiplicative gain modulation arises through unsupervised learning in a predictive coding model of cortical function. Neural Computation, 23(6), 1536–1567.
De Meyer, K., & Spratling, M.W. (2013). A model of partial reference frame transforms through pooling of gain-modulated responses. Cerebral Cortex, 23(5), 1230–1239.
Desimone, R., & Duncan, J. (1995). Neural mechanisms of selective visual attention. Annual Review of Neuroscience, 18, 193–222.
Everling, S., Tinsley, C.J., Gaffan, D., Duncan, J. (2002). Filtering of neural signals by focused attention in the monkey prefrontal cortex. Nature Neuroscience, 5(7), 671–676.
Field, D., Hayes, A., Hess, R. (1993). Contour integration in the human visual system: evidence for a local ‘association’ field. Vision Research, 33, 173–193.
Fitzpatrick, D. (2000). Seeing beyond the receptive field in primary visual cortex. Current Opinion in Neurobiology, 10, 438–443.
Friston, K.J. (2005). A theory of cortical responses. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 360(1456), 815–836.
Friston, K.J. (2009). The free-energy principle: a rough guide to the brain?. Trends in Cognitive Sciences, 13(7), 293–301.
Friston, K.J., & Büchel, C. (2000). Attentional modulations of effective connectivity from V2 to V5/MT in humans. Proceedings of the National Academy of Sciences of the United States of America, 97(13), 7591–7596.
Fukushima, K. (1987). Neural network model for selective attention in visual pattern recognition and associative recall. Applied Optics, 26(23), 4985–4992.
Galletti, C., Battaglini, P.P., Fattori, P. (1995). Eye position influence on the parieto-occipital area PO (V6) of the macaque monkey. European Journal Neuroscience, 7(12), 2486–2501.
Geisler, W.S., Perry, J.S., Super, B.J., Gallogly, D.P. (2001). Edge co-occurrence in natural images predicts contour grouping performance. Vision Research, 41(6), 711–24.
Grigorescu, C., Petkov, N., Westenberg, M.A. (2003). Contour detection based on nonclassical receptive field inhibition. IEEE Transactions on Image Proceedings, 12(7), 729–739.
Guo, K., Robertson, R.G., Pulgarin, M., Nevado, A., Panzeri, S., Thiele, A., Young, M.P. (2007). Spatio-temporal prediction and inference by V1 neurons. European Journal Neuroscience, 26(4), 1045–1054.
Hansen, T., & Neumann, H. (2008). A recurrent model of contour integration in primary visual cortex. Journal of Vision, 8(8).
Hess, R., & Field, D. (1999). Integration of contours: new insight. Trends in Cognitive Sciences, 3, 480–486.
Hess, R., Hayes, A., Field, D.J. (2003). Contour integration and cortical processing. Journal of Physiology - Paris, 97, 105–119.
Huang, W., Jiao, L., Jia, J., Yu, H. (2009). A neural contextual model for detecting peceptually salient contours. Pattern Recognition Letters, 30, 985–993.
Hunt, J., Bosking, W., Goodhill, G. (2011). Statistical structure of lateral connections in the primary visual cortex. Neural Systems and Circuits, 1(1), 3.
Hupé, J.M., James, A.C., Payne, B.R., Lomber, S.G., Girard, P., Bullier, J. (1998). Cortical feedback improves discrimination between figure and background by V1, V2 and V3 neurons. Nature, 394(6695), 784–787.
Jack, A.I., Shulman, G.L., Snyder, A.Z., McAvoy, M., Corbetta, M. (2006). Separate modulations of human v1 associated with spatial attention and task structure. Neuron, 51(1), 135–147.
Jones, H.E., Grieve, K.L., Wang, W., Sillito, A.M. (2001). Surround suppression in primate V1. Journal of Neurophysiology, 86, 2011–2028.
Kanwisher, N., & Wojciulik, E. (2000). Visual attention: insights from brain imaging. Nature Reviews Neuroscience, 1(2), 91–100.
Kapadia, M.K., Ito, M., Gilbert, C.D., Westheimer, G. (1995). Improvement in visual sensitivity by changes in local context: parallel studies in human observers and in V1 of alert monkeys. Neuron, 15(4), 843–856.
Kapadia, M.K., Westheimer, G., Gilbert, C.D. (2000). Spatial distribution of contextual interactions in primary visual cortex and in visual perception. Journal of Neurophysiology, 84, 2048–2062.
Kastner, S., Pinsk, M.A., De Weerd, P., Desimone, R., Ungerleider, L.G. (1999). Increased activity in human visual cortex during directed attention in the absence of visual stimulation. Neuron, 22(4), 751–761.
Kastner, S., & Ungerleider, L.G. (2000). Mechanisms of visual attention in the human cortex. Annual Review of Neuroscience, 23, 315–341.
Kay, J., & Phillips, W.A. (1997). Activation functions, computational goals and learning rules for local processors with contextual guidance. Neural Computation, 9(4), 895–910.
Kay, J.W., & Phillips, W.A. (2011). Coherent infomax as a computational goal for neural systems. Bulletin of Mathematical Biology, 73, 344–372.
Keith, G.P., & Crawford, J.D. (2008). Saccade-related remapping of target representations between topographic maps: a neural network study. Journal of Computational Neuroscience, 24(2), 157–178.
Kersten, D., Mamassian, P., Yuille, A. (2004). Object perception as Bayesian inference. Annual Review of Psychology, 55(1), 271–304.
Koch, C., & Segev, I. (2000). The role of single neurons in information processing. Nature Neuroscience, 3(supplement), 1171–1177.
Koerner, E., Tsujino, H., Masutani, T. (1997). A cortical-type modular neural network for hypothetical reasoning. Neural Networks , 10(5), 791–814.
Kosslyn, S.M., Pascual-Leone, A., Felician, O., Camposano, S., Keenan, J.P., Thompson, W.L., Ganis, G., Sukel, K.E., Alpert, N.M. (1999). The role of area 17 in visual imagery: convergent evidence from PET and rTMS. Science, 284(5411), 167–170.
Kveraga, K., Ghuman, A.S., Bar, M. (2007). Top-down predictions in the cognitive brain. Brain and Cognition, 65, 145–168.
Lamme, V.A.F., Supèr, H., Spekreijse, H. (1998). Feedforward, horizontal, and feedback processing in the visual cortex. Current Opinion in Neurobiology, 8(4), 529–135.
Ledgeway, T., Hess, R.F., Geisler, W.S. (2005). Grouping local orientation and direction signals to extract spatial contours: empirical tests of ‘association field’ models of contour integration. Vision Research, 45, 2511–2522.
Lee, J., & Maunsell, J.H.R. (2009). A normalization model of attentional modulation of single unit responses. PLoS ONE, 4(2), e4651.
Li, W., & Gilbert, C.D. (2002). Global contour saliency and local colinear interactions. Journal of Neurophysiology, 88, 2846–2856.
Li, Z. (1998). A neural model of contour integration in the primary visual cortex. Neural Computation, 10, 903–940.
Lochmann, T., & Deneve, S. (2011). Neural processing as causal inference. Current Opinion in Neurobiology, 21(5), 774–781.
Loffler, G. (2008). Perception of contours and shapes: low and intermediate stage mechanisms. Vision Research, 48(20), 2106–2127.
Luck, S.J., Chelazzi, L., Hillyard, S.A., Desimone, R. (1997). Neural mechanisms of spatial selective attention in areas V1, V2, and V4 of macaque visual cortex. Journal of Neurophysiology, 77, 24–42.
Markov, N.T., & Kennedy, H. (2013). The importance of being hierarchical. Current Opinion in Neurobiology, 23(2), 187–194.
Martinez-Trujillo, J.C., & Treue, S. (2004). Feature-based attention increases the selectivity of population responses in primate visual cortex. Current Biology, 14, 744–751.
McAdams, C.J., & Maunsell, J.H.R. (1999a). Effects of attention on orientation-tuning functions of single neurons in macaque cortical area V4. Journal of Neuroscience, 19(1), 431–441.
McAdams, C.J., & Maunsell, J.H.R. (1999b). Effects of attention on the reliability of individual neurons in monkey visual cortex. Neuron, 23, 765–773.
McAdams, C.J., & Maunsell, J.H.R. (2000). Attention to both space and feature modulates neuronal responses in macaque area V4. Journal of Neurophysiology, 83(3), 1751–1755.
Mehta, A.D., Ulbert, I., Schroeder, C.E. (2000a). Intermodal selective attention in monkeys. I: distribution and timing of effects across visual areas. Cerebral Cortex, 10, 343–358.
Mehta, A.D., Ulbert, I., Schroeder, C.E. (2000b). Intermodal selective attention in monkeys. II: physiological mechanisms of modulation. Cerebral Cortex, 10, 359–370.
Mizobe, K., Polat, U., Pettet, M.W., Kasamatsu, T. (2001). Facilitation and suppression of single striate-cell activity by spatially discrete pattern stimuli presented beyond the receptive field. Visual Neuroscience, 18(3), 377–391.
Moran, J., & Desimone, R. (1985). Selective attention gates visual processing in the extrastriate cortex. Science, 229(4715), 782–784.
Motter, B.C. (1993). Focal attention produces spatially selective processing in visual cortical areas V1, V2, and V4 in the presence of competing stimuli. Journal of Neurophysiology, 70(3), 909–919.
Muckli, L. (2010). What are we missing here? brain imaging evidence for higher cognitive functions in primary visual cortex V1. International Journal of Imaging Systems and Technology, 20(2), 131–139.
Muckli, L., & Petro, L.S. (2013). Network interactions: non-geniculate input to V1. Current Opinion in Neurobiology, 23(2), 195–201.
Mumford, D. (1992). On the computational architecture of the neocortex II: the role of cortico-cortical loops. Biological Cybernetics, 66, 241–251.
Mundhenk, T.N., & Itti, L. (2005). Computational modeling and exploration of contour integration for visual saliency. Biological Cybernetics, 93, 188–212.
Munneke, J., Heslenfeld, D.J., Theeuwes, J. (2008). Directing attention to a location in space results in retinotopic activation in primary visual cortex. Brain Research, 1222, 184–191.
Murphy, B.K., & Miller, K.D. (2003). Multiplicative gain changes are induced by excitation or inhibition alone. Journal of Neuroscience, 23, 10040–10051.
Olshausen, B.A., Anderson, C.H., van Essen, D.C. (1993). A neurobiological model of visual attention and invariant pattern recognition based on dynamic routing of information. Journal of Neuroscience, 13(11), 4700–4719.
Parent, P., & Zucker, S. (1989). Trace inference, curvature consistency, and curve detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 11(8), 823–839.
Pasquale, R.D., & Sherman, S.M. (2011). Synaptic properties of corticocortical connections between the primary and secondary visual cortical areas in the mouse. Journal of Neuroscience, 31(46), 16494–16506.
Pettet, M.W. (1999). Shape and contour detection. Vision Research, 39(3), 551–557.
Phillips, W.A., Kay, J., Smyth, D. (1995). The discovery of structure by multi-stream networks of local processors with contextual guidance. Network, 6(2), 225–246.
Phillips, W.A., & Singer, W. (1997). In search of common foundations for cortical computation. Behavioral and Brain Sciences, 20(4), 657–722.
Polat, U., Mizobe, K., Pettet, M.W., Kasamatsu, T., Norcia, A.M. (1998). Collinear stimuli regulate visual responses depending on cells contrast threshold. Nature, 391(6667), 580–584.
Pollen, D.A. (1999). On the neural correlates of visual perception. Cerebral Cortex, 9(1), 4–19.
Pouget, A., & Sejnowski, T.J. (1997). Spatial transformations in the parietal cortex using basis functions. Journal of Cognitive Neuroscience, 9(2), 222–237.
Rao, R.P.N., & Ballard, D.H. (1999a). Predictive coding in the visual cortex: a functional interpretation of some extra-classical receptive-field effects. Nature Neuroscience, 2(1), 79–87.
Rao, R.P.N., & Sejnowski, T.J. (1999b). Predictive sequence learnng in recurrent neocortical circuits. In S.A. Solla, T.K. Leen, K.-R. Mulle (Eds.), Advances neural information procedure systems (Vol. 12 pp. 164–170). Cambridge: MIT Press.
Reggia, J.A. (1985). Virtual lateral inhibition in parallel activation models of associative memory. In Proceedings international joint conference on artificial intelligence (Vol. 1, pp. 244-248).
Reichardt, W. (1961). Autocorrelation, a principle for the evaluation of sensory information by the central nervous system. In W.A. Rosenblith (Ed.), Sensory communication (pp. 303–317). Cambridge: Massachusetts Institutes of Technology.
Ress, D., Backus, B.T., Heeger, D.J. (2000). Activity in primary visual cortex predicts performance in a visual detection task. Nature Neuroscience, 3(9), 940–945.
Reynolds, J.H., Chelazzi, L., Desimone, R. (1999). Competitive mechanisms subserve attention in macaque areas V2 and V4. Journal Neuroscience, 19, 1736–1753.
Reynolds, J.H., & Desimone, R. (1999). The role of neural mechanisms of attention in solving the binding problem. Neuron, 24(1), 19–29.
Reynolds, J.H., & Desimone, R. (2003). Interacting roles of attention and visual salience in V4. Neuron, 37, 853–863.
Reynolds, J.H., & Heeger, D.J. (2009). The normalization model of attention. Neuron, 61(2), 168–185.
Salin, P.A., & Bullier, J. (1995). Corticocortical connections in the visual system: structure and function. Physiological Reviews, 75, 107–154.
Salinas, E. (2004). Fast remapping of sensory stimuli onto motor actions on the basis of contextual modulation. Journal of Neuroscience, 24(5), 1113–1118.
Salinas, E., & Abbott, L.F. (1995). Transfer of coded information from sensory to motor networks. Journal of Neuroscience, 15, 6461–6474.
Salinas, E., & Abbott, L.F. (1996). A model of multiplicative neural responses in parietal cortex. Proceedings of the National Academy of Sciences of the United States of America, 93, 11956–11961.
Salinas, E., & Abbott, L.F. (1997). Attentional gain modulation as a basis for translation invariance. In J. Bower (Ed.), Computational neuroscience: trends in research. New York: Plenum Press.
Salinas, E., & Abbott, L.F. (2001). Coordinate transformations in the visual system: how to generate gain fields and what to compute with them. Progress in Brain Research, 130, 175–190.
Salinas, E., & Sejnowski, T.J. (2001). Gain modulation in the central nervous system: where behavior, neurophysiology and computation meet. The Neuroscientist, 7(5), 430–440.
Salinas, E., & Thier, P. (2000). Gain modulation: a major computational principle of the central nervous system. Neuron, 27, 15–21.
Schroeder, C.E., Mehta, A.D., Foxe, J.J. (2001). Determinants and mechanisms of attentional modulation of neural processing. Frontiers in Bioscience, 6, d672—d684.
Seriès, P., Lorenceau, J., Frégnac, Y. (2003). The ‘silent’ surround of V1 receptive fields: theory and experiments. Journal of Physiology - Paris, 97(4–6), 453–474.
Sherman, S.M., & Guillery, R.W. (1998). On the actions that one nerve cell can have on another: distinguishing “drivers” from “modulators”. Proceedings of the National Academy of Sciences of the United States of America, 95, 7121–71216.
Shipp, S. (2004). The brain circuitry of attention. Trends in Cognitive Sciences, 8(5), 223–230.
Siegel, M., Körding, K.P., König, P. (2000). Integrating top-down and bottom-up sensory processing by somato-dendritic interactions. Journal of Computational Neuroscience, 8, 161–173.
Sigman, M., Cecchi, G.A., Gilbert, C.D., Magnasco, M.O. (2001). On a common circle: natural scenes and gestalt rules. Proceedings of the National Academy of Sciences of the United States of America, 98(4), 1935–1940.
Silver, M.A., Ress, D., Heeger, D. (2007). Neural correlates of sustained spatial attention in human early visual cortex. Journal of Neurophysiology, 229–237.
Smith, F.W., & Muckli, L. (2010). Nonstimulated early visual areas carry information about surrounding context. Proceedings of the National Academy of Sciences of the United States of America, 107(46), 20099–20103.
Smith, M., & Crawford, J. (2005). Distributed population mechanism for the 3-D oculomotor reference frame transformation. Journal of Neurophysiology, 93, 1742–1761.
Spratling, M.W. (2002). Cortical region interactions and the functional role of apical dendrites. Behavioral and Cognitive Neuroscience Reviews, 1(3), 219–228.
Spratling, M.W. (2008a). Predictive coding as a model of biased competition in visual selective attention. Vision Research, 48(12), 1391–1408.
Spratling, M.W. (2008b). Reconcing predictive coding and biased competition models of cortical function. Frontiers in Computational Neuroscience, 2(4), 1–8.
Spratling, M.W. (2010). Predictive coding as a model of response properties in cortical area V1. Journal of Neuroscience, 30(9), 3531–3543.
Spratling, M.W. (2011). A single functional model accounts for the distinct properties of suppression in cortical area V1. Vision Research, 51(6), 563–576.
Spratling, M.W. (2012a). Predictive coding accounts for V1 response properties recorded using reverse correlation. Biological Cybernetics, 106(1), 37–49.
Spratling, M.W. (2012b). Unsupervised learning of generative and discriminative weights encoding elementary image components in a predictive coding model of cortical function. Neural Computation, 24(1), 60–103.
Spratling, M.W. (2013). Image segmentation using a sparse coding model of cortical area V1. IEEE Transactions on Image Processing, 22(4), 1631–1643.
Spratling, M.W., & Johnson, M.H. (2004). A feedback model of visual attention. Journal of Cognitive Neuroscience, 16(2), 219–237.
Spratling, M.W., & Johnson, M.H. (2006). A feedback model of perceptual learning and categorisation. Visual Cognition, 13(2), 129–165.
Sundberg, K.A., Mitchell, J.F., Reynolds, J.H. (2009). Spatial attention modulates center-surround interactions in macaque visual area V4. Neuron, 61, 1–12.
Their, P., Haarmeier, T., Ignashchenkova, A. (2002). The functional architecture of attention. Current Biology, 12(5), R158–R162.
Thiele, A., Pooresmaeili, A., Delicato, L.S., Herrero, J.L., Roelfsema, P.R. (2009). Additive effects of attention and stimulus contrast in primary visual cortex. Cerebral Cortex, 19, 2970–2981.
Treue, S. (2001). Neural correlates of attention in primate visual cortex. Trends Neurosci, 24(5), 295–300.
Treue, S., & Martinez-Trujillo, J.C. (1999). Feature-based attention influences motion processing gain in macaque visual cortex. Nature, 399(6736), 575–579.
Ursino, M., & La Cara, G.E. (2004). A model of contextual interactions and contour detection in primary visual cortex. Neural Networks, 17(5–6), 719–735.
Vecera, S.P., & O’Reilly, R.C. (1998). Figure-ground organization and object recognition processes: an interactive account. Journal of Experimental Psychology: Human Perception and Performance, 24, 441–462.
Vonikakis, V., Gasteratos, A., Andreadis, I. (2006). Enhancement of perceptually salient contours using a parallel artificial cortical network. Biological Cybernetics, 94(3), 192–214.
Watt, R., Ledgeway, T., Dakin, S.C. (2008). Families of models for gabor paths demonstrate the importance of spatial adjacency. Journal of Vision, 8(7), 1–19.
White, R.L., & Snyder, L.H. (2004). A neural network model of flexible spatial updating. Journal of Neurophysiology, 91(4), 1608–1619.
Xing, J., & Andersen, R.A. (2000). Models of the posterior parietal cortex which perform multimodal integration and represent space in several coordinate frames. Journal of Cognitive Neuroscience, 12(4), 601–614.
Yen, S., & Finkel, L. (1998). Extraction of perceptually salient contours by striate cortical networks. Vision Research, 38(5), 719–741.
Young, R.A., & Lesperance, R.M. (2001). The gaussian derivative model for spatial-temporal vision: II cortical data. Spatial Visual, 14, 321–389.
Zeki, S., & Shipp, S. (1988). The functional logic of cortical connections. Nature, 335, 311–317.
Zhaoping, L. (2005). Border ownership from intracortical interactions in visual area V2. Neuron, 47, 143–153.
Zipser, D., & Andersen, R.A. (1988). A back-propagation programmed network that simulates response properties of a subset of posterior parietal neurons. Nature, 331(6158), 679–684.
Zoccolan, D., Cox, D.D., DiCarlo, J.J. (2005). Multiple object response normalization in monkey inferotemporal cortex. Journal of Neuroscience, 25(36).