A simplified model for measuring longevity risk for life insurance products
Tóm tắt
In this paper, we propose a simple dynamic mortality model to fit and forecast mortality rates for measuring longevity and mortality risks. This proposal is based on a methodology for modelling interest rates, which assumes that changes in spot interest rates depend linearly on a small number of factors. These factors are identified as interest rates with a given maturity. Similarly, we assume that changes in mortality rates depend linearly on changes in a specific mortality rate, which we call the key mortality rate. One of the main advantages of this model is that it allows the development of an easy to implement methodology to measure longevity and mortality risks using simulation techniques. Particularly, we employ the model to calculate the Value-at-Risk and Conditional-Value-at-Risk of an insurance product testing the accuracy and robustness of our proposal using out-of-sample data from six different populations.
Tài liệu tham khảo
Akaike H (1974) Stochastic theory of minimal realization. IEEE Trans Autom Control 19(6):667–674
Anderson BG, Bell ML (2009) Weather-related mortality: how heat, cold, and heat waves affect mortality in the United States. Epidemiology 20(2):205
Atance D, Balbás A, Navarro E (2020) Constructing dynamic life tables with a single-factor model. Decis Econ Finan 43(2):787–825
Atance D, Debón A, Navarro E (2020) A comparison of forecasting mortality models using resampling methods. Mathematics 8(9):1550
Bauer D, Benth FE, Kiesel R (2012) Modeling the forward surface of mortality. SIAM J Financ Math 3(1):639–666
Bauer D, Börger M, Ruß J, Zwiesler H-J (2008) The volatility of mortality. Asia–Pac J Risk Insur 3(1):172–199.
Biffis E (2005) Affine processes for dynamic mortality and actuarial valuations. Insur Math Econom 37(3):443–468
Biffis E, Millossovich P (2006) A bidimensional approach to mortality risk. Decis Econ Financ 29(2):71–94
Booth H, Maindonald J, Smith L (2002) Applying Lee-Carter under conditions of variable mortality decline. Popul Stud 56(3):325–336
Börger M (2010) Deterministic shock vs. stochastic value–at–risk an analysis of the Solvency II standard model approach to longevity risk. Bl DGVFM 31(2):225–259
Börger M, Fleischer D, Kuksin N (2014) Modeling the mortality trend under modern solvency regimes. ASTIN Bull 44(1):1–38
Brouhns N, Denuit M, Vermunt JK (2002) A poisson log-bilinear regression approach to the construction of projected lifetables. Insur Math Econ 31(3):373–393
Cairns AJ (2007) A multifactor generalisation of the Olivier–Smith model for stochastic mortality. In: Proceedings of the 1st IAA Life Colloquium. Tech. Rep., Heriot-Watt University, Edinburgh
Cairns AJ, Blake D, Dowd K (2006) A two-factor model for stochastic mortality with parameter uncertainty: theory and calibration. J Risk Insur 73(4):687–718
Cairns AJ, Blake D, Dowd K, Coughlan GD, Epstein D, Ong A, Balevich I (2009) A quantitative comparison of stochastic mortality models using data from England and Wales and the United States. N Am Actuar J 13(1):1–35
Centers for Disease Control and Prevention and Others (2020) COVID-19 provisional counts–weekly updates by select demographic and geographic characteristics. https://www.cdc.gov/nchs/nvss/vsrrcovid-weekly/index.html. Accessed 4 Oct 2021
Chen RY, Millossovich P (2018) Sex-specific mortality forecasting for UK countries: a coherent approach. Eur Actuar J 8(1):69–95
Christensen K, Doblhammer G, Rau R, Vaupel JW (2009) Ageing populations: the challenges ahead. Lancet 374(9696):1196–1208
Chulia H, Guillen M, Uribe JM (2016) Modeling longevity risk with generalized dynamic factor models and vine copulae. Astin Bull 46(1):165–190
Continuos Mortality Investigation (2009) CMI A prototype mortality projection model: part one–an outline of the proposed approach. Working Paper No 38
Danesi IL, Haberman S, Millossovich P (2015) Forecasting mortality in subpopulations using Lee–Carter type models: a comparison. Insur Math Econ 62:151–161
Debón A, Montes F, Puig F (2008) Modelling and forecasting mortality in Spain. Eur J Oper Res 189(3):624–637
Delwarde A, Denuit M, Eilers P (2007) Smoothing the Lee–carter and Poisson log-bilinear models for mortality forecasting: a penalized log-likelihood approach. Stat Model 7(1):29–48
Delwarde A, Denuit M, Partrat C (2007) Negative binomial version of the Lee–Carter model for mortality forecasting. Appl Stoch Model Bus Ind 23(5):385–401
Díaz J, Garcia R, Velázquez de Castro F, Hernández E, López C, Otero A (2002) Effects of extremely hot days on people older than 65 years in Seville (Spain) from 1986 to 1997. Int J Biometeorol 46:145–149
Dickson DC, Hardy MR, Waters HR (2019) Actuarial mathematics for life contingent risks. Cambridge University Press, New York
Dirección General de Seguros y Fondos de Pensiones, (DGSFYP) (2020) Resolución de 17 de diciembre de 2020. Boletín Oficial del Estado, (BOE), num. 338, de 28 de diciembre de 2020
Dodd E, Forster JJ, Bijak J, Smith PW (2021) Stochastic modelling and projection of mortality improvements using a hybrid parametric/semi-parametric age-period-cohort model. Scand Actuar J 2021(2):134–155
Dowd K, Cairns AJ, Blake D (2020) CBDX: a workhorse mortality model from the Cairns–Blake–Dowd family. Ann Actuar Sci 14(2):445–460
Elton EJ, Gruber MJ, Michaely R (1990) The structure of spot rates and immunization. J Financ 45(2):629–642
Enchev V, Kleinow T, Cairns AJ (2017) Multi-population mortality models: fitting, forecasting and comparisons. Scand Actuar J 2017(4):319–342
European Insurance and Occupational Pensions Authority (2014a) He underlying assumptions in the standard formula for the solvency capital requirement calculation. https://eiopa.europa.eu/Publications/
European Insurance and Occupational Pensions Authority (2014b) Technical specification for the preparatory phase (part I). https://eiopa.europa.eu/Publications/
Felipe A, Guillén M, Perez-Marin A (2002) Recent mortality trends in the Spanish population. Br Actuar J 8(4):757–786
Forfar D, McCutcheon J, Wilkie A (1988) On graduation by mathematical formula. J Inst Actuar 115(1):1–149
Glei DA, Horiuchi S (2007) The narrowing sex differential in life expectancy in high-income populations: effects of differences in the age pattern of mortality. Popul Stud 61(2):141–159
Glei DA, Preston SH (2020) Estimating the impact of drug use on US mortality, 1999–2016. PLoS ONE 15(1):e0226732
Gorina Y, Goulding MR, Hoyert DL, Lentzner HR (2005) Trends in causes of death among older persons in the United States. Aging Trends 2005(6):1–12
Guillen M, Vidiella-i Anguera A (2005) Forecasting Spanish natural life expectancy. Risk Anal 25(5):1161–1170
Haberman S, Renshaw A (2011) A comparative study of parametric mortality projection models. Insur Math Econ 48(1):35–55
Haberman S, Renshaw A (2012) Parametric mortality improvement rate modelling and projecting. Insur Math Econ 50(3):309–333
Haldrup N, Rosenskjold C (2019) A parametric factor model of the term structure of mortality. Econometrics 7(1):9
Hari N, De Waegenaere A, Melenberg B, Nijman TE (2008) Longevity risk in portfolios of pension annuities. Insur Math Econ 42(2):505–519
Ho JY, Hendi AS (2018) Recent trends in life expectancy across high income countries: retrospective observational study. BMJ 362:k2562
Human Mortality Database (2022) University of california, berkeley (usa), and max planck institute for demographic research (germany). Avaliable at www.mortality.org and www.humanmortality.de. Accessed 4 Oct 2022
Hunt A, Villegas AM (2021) Mortality improvement rates: modeling, parameter uncertainty, and robustness. N Am Actuar J 27(1):47–73
Hyndman RJ, Booth H, Tickle L, Maindonald J (2017) Demography: forecasting mortality, fertility, migration and population data. R Packag Version 1(21):1–09
Hyndman RJ, Khandakar Y (2008) Automatic time series forecasting: the forecast package for R. J Stat Softw 27:1–22
Jorion P (2001) Value at risk: the new benchmark for managing financial risk. McGraw-Hill Professional, NY
Kalkstein LS, Davis RE (1989) Weather and human mortality: an evaluation of demographic and interregional responses in the United States. Ann Assoc Am Geogr 79(1):44–64
Lee RD, Carter LR (1992) Modeling and forecasting us mortality. J Am Stat Assoc 87(419):659–671
Lehallier B, Gate D, Schaum N, Nanasi T, Lee SE, Yousef H, Moran Losada P, Berdnik D, Keller A, Verghese J et al (2019) Undulating changes in human plasma proteome profiles across the lifespan. Nat Med 25(12):1843–1850
Li JS-H, Hardy MR, Tan KS (2009) Uncertainty in mortality forecasting: an extension to the classical Lee-Carter approach. Astin Bull 39(1):137–164
Li JS-H, Luo A (2012) Key q-duration: a framework for hedging longevity risk. Astin Bull 42(2):413–452
Li N, Lee R, Gerland P (2013) Extending the Lee–Carter method to model the rotation of age patterns of mortality decline for long-term projections. Demography 50(6):2037–2051
Macdonald AS, Richards SJ, Currie ID (2018) Modelling mortality with actuarial applications. Cambridge University Press, New York
Málek J, van Quang T (2020) Stock market risk measured by VaR nad CVaR: a comparison study. Západočeská univerzita v Plzni
Mitchell D, Brockett P, Mendoza-Arriaga R, Muthuraman K (2013) Modeling and forecasting mortality rates. Insur Math Econ 52(2):275–285
Murphy SL, Xu J, Kochanek KD, Arias E (2018) Mortality in the United States, 2017. National Center for Health Statistics, Hyattsville, MD
Navarro E (1991) Tablas de mortalidad de la población española 1982: Metodología y fuentes. Mapfre
Navarro E, Nave JM (2001) The structure of spot rates and immunization: some further results. Span Econ Rev 3(4):273–294
Neves C, Fernandes C, Hoeltgebaum H (2017) Five different distributions for the Lee–Carter model of mortality forecasting: a comparison using GAS models. Insur Math Econ 75:48–57
Olivieri A (2011) Stochastic mortality: experience-based modeling and application issues consistent with Solvency 2. Eur Actuar J 1(1):101–125
Pitacco E, Denuit M, Haberman S, Olivieri A (2009) Modelling longevity dynamics for pensions and annuity business. Oxford University Press, Oxford
Plat R (2009) On stochastic mortality modeling. Insur Math Econ 45(3):393–404
Plat R (2011) One-year value-at-risk for longevity and mortality. Insur Math Econ 49(3):462–470
R Core Team (2021) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria
Rau R, Soroko E, Jasilionis D, Vaupel JW (2008) Continued reductions in mortality at advanced ages. Popul Dev Rev 34(4):747–768
Renshaw AE, Haberman S (2003) Lee–Carter mortality forecasting with age-specific enhancement. Insur Math Econ 33(2):255–272
Renshaw AE, Haberman S (2006) A cohort-based extension to the Lee–Carter model for mortality reduction factors. Insur Math Econ 38(3):556–570
Richards SJ (2021) A value-at-risk approach to mis-estimation risk. Br Actuar J 26:e13
Richards SJ, Currie ID, Ritchie GP (2014) A value-at-risk framework for longevity trend risk. Br Actuar J 19(1):116–139
Richman R, Wüthrich MV (2021) A neural network extension of the Lee–Carter model to multiple populations. Ann Actuar Sci 15(2):346–366
Riffe T (2015) Reading Human Fertility Database and Human Mortality Database data into R. Technical Report TR-2015-004, MPIDR
Rockafellar RT, Uryasev S et al (2000) Optimization of conditional value-at-risk. J Risk 2:21–42
Schwarz G (1978) Estimating the dimension of a model. Ann Stat 6(2):461–464
Shiels MS, de González AB, Best AF, Chen Y, Chernyavskiy P, Hartge P, Khan SQ, Pérez-Stable EJ, Rodriquez EJ, Spillane S et al (2019) Premature mortality from all causes and drug poisonings in the USA according to socioeconomic status and rurality: an analysis of death certificate data by county from 2000–15. Lancet Public Health 4(2):e97–e106
Stafoggia M, Forastiere F, Agostini D, Biggeri A, Bisanti L, Cadum E, Caranci N, de’Donato F, De Lisio S, De Maria M, Michelozzi P, Miglio R, Pandolfi P, Picciotto S, Rognoni M, Russo A, Scarnato C, Perucci CA (2006) Vulnerability to heat–related mortality: a multicity, population–based, case–crossover analysis. Epidemiology 17(3):315–323
Sweeting P, Christie A, Gladwyn E (2015) The missing link: economic exposure and pension plan risk. Ann Actuar Sci 9(2):290–303
Tsai JT, Wang JL, Tzeng LY (2010) On the optimal product mix in life insurance companies using conditional value at risk. Insur Math Econ 46(1):235–241
Véhel JL (2018) A simple isochore model evidencing regulation risk. Ann Actuar Sci 12(2):233–248
Vékás P (2020) Rotation of the age pattern of mortality improvements in the European Union. CEJOR 28(3):1031–1048
Velez L (2007) The aging male/end-of-life issues. Clinical Men’s Health E-Book: Evidence in Practice, pp 476
Villegas AM, Kaishev VK, Millossovich P (2018) StMoMo: an R package for stochastic mortality modelling. J Stat Softw 84(3):1–38
Xu Y, Sherris M, Ziveyi J (2020) Continuous-time multi-cohort mortality modelling with affine processes. Scand Actuar J 2020(6):526–552
Yamai Y, Yoshiba T et al (2002) On the validity of value-at-risk: comparative analyses with expected shortfall. Monet Econ Stud 20(1):57–85
Yang X-S (2019) Introduction to algorithms for data mining and machine learning. Academic Press, Cambridge, MA, USA