Một phương pháp đơn giản để kiểm soát sự bám dính của tế bào trên các mô hình nuôi cấy tế bào trong ống nghiệm được phát triển từ sinh học thông qua liên kết RGD được điều chế bằng UV

Ana María Porras Hernández1, Hannah Pohlit1, Frida Sjögren1, Liyang Shi2, Dmitri Ossipov2, Maria Antfolk3, Maria Tenje1
1Science for Life Laboratory, Department of Materials Science and Engineering, Uppsala University, Uppsala, Sweden
2Department of Chemistry-Ångström, Uppsala University, Uppsala, Sweden
3BRIC—Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark

Tóm tắt

Tóm tắtTrong nghiên cứu này, chúng tôi trình bày một phương pháp chế tạo hydrogel axit hyaluronic (HA) với các tính chất bám dính tế bào được kiểm soát không gian dựa trên việc bắt chéo polymer hóa bằng ánh sáng và chức năng hóa. Cách tiếp cận này sử dụng cùng một con đường phản ứng cho cả hai bước, có nghĩa là nó thân thiện với người dùng và cho phép thích ứng ở bất kỳ giai đoạn nào trong quá trình chế tạo. Hơn nữa, quá trình này không yêu cầu bất kỳ chất kết nối bổ sung nào. Hydrogel được hình thành bằng phản ứng cộng gốc tự do khởi đầu bằng UV giữa các nhóm acrylamide (Am) trên xương sống của HA. Sự bám dính của tế bào được điều chỉnh bằng cách chức năng hóa trình tự peptide bám dính arginine–glycine–aspartate trên bề mặt hydrogel thông qua phản ứng thiol–ene trung gian gốc sử dụng các nhóm Am chưa phản ứng. Chúng tôi cho thấy rằng các hình vuông kích thước 10 × 10 µm2 có thể được tạo hình với độ sắc nét và độ phân giải tốt. Diện tích nhỏ nhất có thể được tạo hình mà vẫn đạt được sự bám dính tế bào tốt là các hình vuông kích thước 25 × 25 µm2, cho thấy sự bám dính của tế bào đơn lẻ. Tế bào nội mô não chuột đã bám dính và duy trì nuôi cấy trong tối đa 7 ngày trên các mẫu hình vuông kích thước 100 × 100 µm2. Chúng tôi thấy tiềm năng của sự kết hợp vật liệu này cho việc sử dụng trong các mô hình tổ chức trên chip và kỹ thuật mô trong tương lai, nơi vị trí của các tế bào có tầm quan trọng và để nghiên cứu thêm về sinh học tế bào nội mô.

Từ khóa


Tài liệu tham khảo

Thiele J, Ma Y, Bruekers SMC, Ma S, Huck WTS. 25th anniversary article: designer hydrogels for cell cultures: a materials selection guide. Adv Mater. 2014;26:125–48. https://doi.org/10.1002/adma.201302958.

Verhulsel M, Vignes M, Descroix S, Malaquin L, Vignjevic DA, Viovy JL. A review of microfabrication and hydrogel engineering for micro-organs on chips. Biomaterials. 2014;35:1816–32. https://doi.org/10.1016/j.biomaterials.2013.11.021.

Moon JJ, Hahn MS, Kim I, Nsiah BA, West JL. Micropatterning of poly(ethylene glycol) diacrylate hydrogels with biomolecules to regulate and guide endothelial morphogenesis. Tissue Eng A. 2009;15:579–85. https://doi.org/10.1089/ten.tea.2008.0196.

Hahn MS, Taite LJ, Moon JJ, Rowland MC, Ruffino KA, West JL. Photolithographic patterning of polyethylene glycol hydrogels. Biomaterials. 2006;27:2519–24. https://doi.org/10.1016/j.biomaterials.2005.11.045.

Beckwith KM, Sikorski P. Patterned cell arrays and patterned co-cultures on polydopamine-modified poly(vinyl alcohol) hydrogels. Biofabrication. 2013;5:45009–22. https://doi.org/10.1088/1758-5082/5/4/045009.

Hynd MR, Frampton JP, Burnham M-RR, Martin ML, Dowell-Mesfin NM, Turner JN. et al. Functionalized hydrogel surfaces for the patterning of multiple biomolecules. J Biomed Mater Res A. 2006;81:347–54. https://doi.org/10.1002/jbm.a.31002.

Lutolf MP, Hubbell JA. Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nat Biotechnol. 2005;23:47–55.

Drury JL, Mooney DJ. Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials. 2003;24:4337–51.

Bignami A, Hosley M, Dahl D. Hyaluronic acid and hyaluronic acid-binding proteins in brain extracellular matrix. Anat Embryol. 1993;188:419–33.

Kim IL, Khetan S, Baker BM, Chen CS, Burdick JA. Fibrous hyaluronic acid hydrogels that direct MSC chondrogenesis through mechanical and adhesive cues. Biomaterials. 2013;34:5571–80. https://doi.org/10.1016/j.biomaterials.2013.04.004.

Ananthanarayanan B, Kim Y, Kumar S. Elucidating the mechanobiology of malignant brain tumors using a brain matrix-mimetic hyaluronic acid hydrogel platform. Biomaterials. 2011;32:7913–23. https://doi.org/10.1016/j.biomaterials.2011.07.005.

Marklein RA, Burdick JA. Spatially controlled hydrogel mechanics to modulate stem cell interactions. Soft Matter. 2009;6:136–43. https://doi.org/10.1039/b916933d.

Lei Y, Gojgini S, Lam J, Segura T. The spreading, migration and proliferation of mouse mesenchymal stem cells cultured inside hyaluronic acid hydrogels. Biomaterials. 2010;32:39–47. https://doi.org/10.1016/j.biomaterials.2010.08.103.

Khetan S, Burdick JA. Patterning network structure to spatially control cellular remodeling and stem cell fate within 3-dimensional hydrogels. Biomaterials. 2010;31:8228–34. https://doi.org/10.1016/j.biomaterials.2010.07.035.

Hanjaya-Putra D, Wong KT, Hirotsu K, Khetan S, Burdick JA, Gerecht S. Spatial control of cell-mediated degradation to regulate vasculogenesis and angiogenesis in hyaluronan hydrogels. Biomaterials. 2012;33:6123–31. https://doi.org/10.1016/j.biomaterials.2012.05.027.

Shi L, Carstensen H, Hölzl K, Lunzer M, Hilborn J, Ovsianikon A. et al. Dynamic coordination chemistry enables free directional printing of biopolymer hydrogel. Chem Mater. 2017;29:5816–23. https://doi.org/10.1021/acs.chemmater.7b00128.

Gramlich WM, Kim IL, Burdick JA. Synthesis and orthogonal photopatterning of hyaluronic acid hydrogels with thiol-norbornene chemistry. Biomaterials. 2013;34:9803–11. https://doi.org/10.1016/j.biomaterials.2013.08.089.

Wade RJ, Bassin EJ, Gramlich WM, Burdick JA. Nanofibrous hydrogels with spatially patterned biochemical signals to control cell behavior. Adv Mater. 2015;27:1356–62. https://doi.org/10.1002/adma.201404993.

Jing J, Fournier A, Szarpak-Jankowska A, Block MR, Auzély-Velty R. Type, density, and presentation of grafted adhesion peptides on polysaccharide-based hydrogels control preosteoblast behavior and differentiation. Biomacromolecules. 2015;16:715–22. https://doi.org/10.1021/bm501613u.

Griffin DR, Borrajo J, Soon A, Acosta-Vélez GF, Oshita V, darling N. et al. Hybrid photopatterned enzymatic reaction (HyPER) for in situ cell manipulation. ChemBioChem. 2014;15:233–42. https://doi.org/10.1002/cbic.201300687.

Goubko CA, Majumdar S, Basak A, Cao X. Hydrogel cell patterning incorporating photocaged {RGDS} peptides. Biomed Microdevices. 2010;12:555–68. https://doi.org/10.1007/s10544-010-9412-7.

Kharkar PM, Kiick KL, Kloxin AM. Designing degradable hydrogels for orthogonal control of cell microenvironments. Chem Soc Rev. 2013;42:7335–72. https://doi.org/10.1039/C3CS60040H.

Ma Y, Yung LYL. Detection of dissolved CO2 based on the aggregation of gold nanoparticles. Anal Chem. 2014;86:2429–35. https://doi.org/10.1021/ac403256s.

Shi L, Wang F, Zhu W, Xu Z, Fuchs S, Hilborn J, et al. Self-healing silk fibroin-based hydrogel for bone regeneration: dynamic metal-ligand self-assembly approach. Adv Funct Mater. 2017;27. https://doi.org/10.1002/adfm.201700591.

Liu VA, Bhatia SN. Three-dimensional photopatterning of hydrogels containing living cells. Biomedical Microdevices. 2002;4:257–266. https://doi.org/10.1023/A:1020932105236.

Vanderhooft JL, Alcoutlabi M, Magda JJ, Prestwich GD. Rheological properties of cross-linked hyaluronan-gelatin hydrogels for tissue engineering. Macromol Biosci. 2009;9:20–8. https://doi.org/10.1002/mabi.200800141.

Park YD, Tirelli N, Hubbell JA. Photopolymerized hyaluronic acid-based hydrogels and interpenetrating networks. Biomaterials. 2002;24:203–10. https://doi.org/10.1016/B978-008045154-1.50023-X.

Lam J, Truong NF, Segura T. Design of cell-matrix interactions in hyaluronic acid hydrogel scaffolds. Acta Biomater. 2014;10:1571–80. https://doi.org/10.1016/j.actbio.2013.07.025.

Polizzotti BD, Fairbanks BD, Anseth KS. Three-dimensional biochemical patterning of click-based composite hydrogels via thiolene photopolymerization. Biomacromolecules. 2008;9:1084–7. https://doi.org/10.1021/bm7012636.

Pedron S, Pritchard AM, Vincil GA, Andrade B, Zimmerman SC, Harley BAC. Patterning three-dimensional hydrogel microenvironments using hyperbranched polyglycerols for independent control of mesh size and stiffness. Biomacromolecules. 2017;18:1393–400. https://doi.org/10.1021/acs.biomac.7b00118.

De Luca AC, Stevens JS, Schroeder SLM, Gbuilbaud J-B, Saiani A, Downes S. et al. Immobilization of cell-binding peptides on poly-e-caprolactone film surface to biomimic the peripheral nervous system. J Biomed Mater Res A. 2012;101A:491–501. https://doi.org/10.1002/jbm.a.34345.

Gandavarapu NR, Azagarsamy MA, Anseth KS. Photo-click living strategy for controlled, reversible exchange of biochemical ligands. Adv Mater. 2014;26:2521–6. https://doi.org/10.1002/adma.201304847.

Anderson DEJ, Hinds MT. Endothelial cell micropatterning: methods, effects, and applications. Ann Biomed Eng. 2011;39:2329–45. https://doi.org/10.1007/s10439-011-0352-z.

Wong AD, Ye M, Levy AF, Rothstein JD, Bergles DE, Searson PC. The blood-brain barrier: an engineering perspective. Front Neuroeng. 2013;6. https://doi.org/10.3389/fneng.2013.00007.

Bellis SL. Advantages of RGD peptides for directing cell association with biomaterials. Biomaterials. 2011;32:4205–10. https://doi.org/10.1016/J.BIOMATERIALS.2011.02.029.

Beer JH, Springer KT, Coller BS. Immobilized Arg-Gly-Asp (RGD) peptides of varying lengths as structural probes of the platelet glycoprotein IIb/IIIa receptor. Blood. 1992;79:117–28. https://doi.org/10.1182/blood.v79.1.117.bloodjournal791117.

Craig WS, Cheng S, Mullen DG, Blevitt J, Pierschbacher MD. Concept and progress in the development of RGD-containing peptide pharmaceuticals. Biopolymers. 1995;37:157–75. https://doi.org/10.1002/bip.360370209.

Kantlehner M, Finsinger D, Meyer J, Schaffner P, Jonczyk A. et al. Selective RGD-mediated adhesion of osteoblasts at surfaces of implants. Angew Chem. 1999;38:560–2. https://doi.org/10.1002/(SICI)1521-3773(19990215)38:4<560::AID-ANIE560>3.0.CO;2-F.

Auernheimer J, Dahmen C, Hersel U, Bausch A, Kessler H. Photoswitched cell adhesion on surfaces with RGD peptides. J Am Chem Soc. 2005;127:16107. https://doi.org/10.1021/ja053648q.