A simple population protocol for fast robust approximate majority
Tóm tắt
Từ khóa
Tài liệu tham khảo
Alon N. and Spencer J.H. (1992). The Probabilistic Method. Wiley, New York
Angluin D., Aspnes J., Diamadi Z., Fischer M.J. and Peralta R. (2006). Computation in networks of passively mobile finite-state sensors. Distrib. Comput. 18(4): 235–253
Angluin, D., Aspnes, J., Eisenstat, D.: Fast computation by population protocols with a leader. In: Distributed Computing: 20th International Symposium, DISC 2006: Stockholm, Sweden, September 2006: Proceedings, pp. 61–75 (2006)
Angluin D., Aspnes J., Eisenstat D. and Ruppert E. (2007). The computational power of population protocols. Distrib. Comput. 20(4): 279–304
Aspnes J. and Ruppert E. (2007). An introduction to population protocols. Bull. Eur. Assoc. Theor. Comput. Sci. 93: 98–117
Chow Y.S., Robbins H. and Siegmund D. (1991). The Theory of Optimal Stopping. Dover, New York
Ezhilchelvan, P., Mostefaoui, A., Raynal, M.: Randomized multivalued consensus. In: ISORC ’01: Proceedings of the Fourth International Symposium on Object-Oriented Real-Time Distributed Computing, p. 195. IEEE Computer Society, Washington (2001)
Feller W. (1958). An Introduction to Probability and its Applications, vol. 1, 3rd edn. Wiley, New York
Gillespie D.T. (1977). Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem. 81(25): 2340–2361
Gillespie D.T. (1992). A rigorous derivation of the chemical master equation. Physica A 188: 404–425
Grimmet G.R. and Stirzaker D.R. (1992). Probability and Random Processes, 2nd edn. Oxford Science Publications, Oxford
Kurtz, T.G.: Approximation of Population Processes. No. 36 in CBMS-NSF Regional Conference Series in Applied Mathematics. Society for Industrial and Applied Mathematics, Philadelphia (1981)
Mostefaoui A., Raynal M. and Tronel F. (2000). From binary consensus to multivalued consensus in asynchronous message-passing systems. Inform. Proces. Lett. 73(5–6): 2007–212