A simple perturbation approach to Blasius equation

Applied Mathematics and Computation - Tập 140 Số 2-3 - Trang 217-222 - 2003
Ji‐Huan He1
1Shanghai Institute of Applied Mathematics and Mechanics, Shanghai University, P.O. Box 189, 149 Yangchang Road, Shanghai 200 072, China#TAB#

Tóm tắt

Từ khóa


Tài liệu tham khảo

He, 1998, Approximate analytical solution of Blasius’s equation, Commun. Nonlinear Sci. Numer. Simulation, 3, 206, 10.1016/S1007-5704(98)90046-6

He, 1999, Variational iteration method: a kind of nonlinear analytical technique: some examples, Int. J. Nonlinear Mech., 34, 699, 10.1016/S0020-7462(98)00048-1

He, 1999, Homotopy perturbation technique, Comput. Meth. Appl. Mech. Eng., 178, 257, 10.1016/S0045-7825(99)00018-3

He, 2000, A coupling method of homotopy technique and perturbation technique for nonlinear problems, Int. J. Nonlinear Mech., 35, 37, 10.1016/S0020-7462(98)00085-7

He, 2000, A review on some new recently developed nonlinear analytical techniques, Int. J. Nonlinear Sci. Numer. Simulation, 1, 51, 10.1515/IJNSNS.2000.1.1.51

J.H. He, Iteration perturbation method for strongly nonlinear oscillations, J. Vib. Control, accepted for publication

Howarth, 1938, On the solution of the laminar boundary layer equation, Proc. R Soc. Lond. A, 164, 547, 10.1098/rspa.1938.0037

Liao, 1995, An approximate solution technique not depending on small parameters: a special example, Int. J. Nonlinear Mech., 30, 371, 10.1016/0020-7462(94)00054-E

Liao, 1999, A uniformly valid analytic solution of 2-D viscous flow over a semi-infinite flat plate, J. Fluid. Mech., 385, 101, 10.1017/S0022112099004292

Nayfeh, 1981