A simple one-step electrochemical deposition of bioinspired nanocomposite for the non-enzymatic detection of dopamine

Vijayaraj Kathiresan1, Dinakaran Thirumalai2, Thenmozhi Rajarathinam2, Miri Yeom2, Jaewon Lee3, Suhkmann Kim4, Jung‐Sik Yoon5, Seung‐Cheol Chang2
1Graduate Department of Chemical Materials, Pusan National University, Busan, 46241, Republic of Korea
2Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan, 46241, Republic of Korea
3College of Pharmacy, Pusan National University, Busan, 46241, Republic of Korea
4Department of Chemistry, Pusan National University, Busan 46241, Republic of Korea
5Busan Center, Korea Basic Science Institute, Busan, 46241, Republic of Korea

Tóm tắt

AbstractA simple and cost-effective electrochemical synthesis of carbon-based nanomaterials for electrochemical biosensor is of great challenge these days. Our study describes a single-step electrochemical deposition strategy to prepare a nanocomposite of electrochemically reduced graphene oxide (ErGO), multi-walled carbon nanotubes (MWCNTs), and polypyrrole (PPy) in an aqueous solution of pH 7.0 for dopamine (DA) detection. The ErGO/MWCNTs/PPy nanocomposites show enhanced electrochemical performance due to the strong π–π* stacking interactions among ErGO, MWCNTs, and PPy. The efficient interaction of the nanocomposites is confirmed by evaluating its physical and electrochemical characteristics using field-emission scanning electron microscopy, Raman spectroscopy, electrochemical impedance spectroscopy, cyclic voltammetry, and amperometry. The deposited nanocomposites are highly stable on the substrates and possess high surface areas, which is vital to improve the sensitivity and selectivity for DA detection. The controlled deposition of the ErGO/MWCNTs/PPy nanocomposites can provide enhanced electrochemical detection of DA. The sensor demonstrates a short time response within 2 s and is a highly sensitive approach for DA detection with a dynamic linear range of 25–1000 nM (R2 = 0.999). The detection limit is estimated to be 2.3 nM, and the sensor sensitivity is calculated to be 8.96 μA μM−1 cm−2, with no distinct responses observed for other biological molecules.

Từ khóa


Tài liệu tham khảo

Ali SR, Ma Y, Parajuli RR, Balogun Y, Lai WY, He H. A nonoxidative sensor based on a self-doped polyaniline/carbon nanotube composite for sensitive and selective detection of the neurotransmitter dopamine. Anal Chem. 2007;79(6):2583–7. https://doi.org/10.1021/ac062068o.

Bose S, Kuila T, Uddin ME, Kim NH, Lau AKT, Lee JH. In situ synthesis and characterization of electrically conductive polypyrrole/graphene nanocomposites. Polymer. 2010;51(25):5921–8. https://doi.org/10.1016/j.polymer.2010.10.014.

Chen A, Xu L, Zhang X, Yang Z, Yang S. Improving surface adsorption via shape control of hematite alpha-Fe2O3 nanoparticles for sensitive dopamine sensors. ACS Appl Mater Interfaces. 2016;8(49):33765–74. https://doi.org/10.1021/acsami.6b11088.

Du D, Liu J, Zhang XY, Cui XL, Lin YH. One-step electrochemical deposition of a graphene-ZrO2 nanocomposite: preparation, characterization and application for detection of organophosphorus agents. J Mater Chem. 2011;21(22):8032–7. https://doi.org/10.1039/c1jm10696a.

Elnaggar EM, Kabel KI, Farag AA, Al-Gamal AG. Comparative study on doping of polyaniline with graphene and multi-walled carbon nanotubes. J Nanostruct Chem. 2017;7:75–83. https://doi.org/10.1007/s40097-017-0217-6.

Feng XM, Li RM, Ma YW, Chen RF, Shi NE, Fan QL, Huang W. One-step electrochemical synthesis of graphene/polyaniline composite film and its applications. Adv Funct Mater. 2011;21(15):2989–96. https://doi.org/10.1002/adfm.201100038.

Gao H, Xiao F, Ching CB, Duan H. One-step electrochemical synthesis of PtNi nanoparticle-graphene nanocomposites for nonenzymatic amperometric glucose detection. ACS Appl Mater Interfaces. 2011;3(8):3049–57. https://doi.org/10.1021/am200563f.

Gao XF, Jang J, Nagase S. Hydrazine and thermal reduction of graphene oxide: reaction mechanisms, product structures, and reaction design. J Phys Chem C. 2010;114(2):832–42. https://doi.org/10.1021/jp909284g.

Geim AK, Novoselov KS. The rise of graphene. Nat Mater. 2007;6(3):183–91. https://doi.org/10.1038/nmat1849.

Guo HL, Wang XF, Qian QY, Wang FB, Xia XH. A green approach to the synthesis of graphene nanosheets. ACS Nano. 2009;3(9):2653–9. https://doi.org/10.1021/nn900227d.

Huang H, Chen T, Liu X, Ma H. Ultrasensitive and simultaneous detection of heavy metal ions based on three-dimensional graphene-carbon nanotubes hybrid electrode materials. Anal Chim Acta. 2014;852:45–54. https://doi.org/10.1016/j.aca.2014.09.010.

Hummers WS, Offeman RE. Preparation of graphitic oxide. J Am Chem Soc. 1958;80(6):1339. https://doi.org/10.1021/ja01539a017.

Jiang L, Nelson GW, Abda J, Foord JS. Novel modifications to carbon-based electrodes to improve the electrochemical detection of dopamine. ACS Appl Mater Interfaces. 2016;8:28338–48. https://doi.org/10.1021/acsami.6b03879.

Jung Y, Singh N, Choi KS. Cathodic deposition of polypyrrole enabling the one-step assembly of metal-polymer hybrid electrodes. Angew Chem. 2009;48(44):8331–4. https://doi.org/10.1002/anie.200903596.

Keerthi M, Boopathy G, Chen S-M, Chen T-W, Lou B-S. A core-shell molybdenum nanoparticles entrapped f-MWCNT s hybrid nanostructured material based non-enzymatic biosensor for electrochemical detection of dopamine neurotransmitter in biological samples. Sci Rep. 2019;9(1):1–12.

Li P, Yang Y, Shi E, Shen Q, Shang Y, Wu S, Wei J, Wang K, Zhu H, Yuan Q, Cao A, Wu D. Core-double-shell, carbon nanotube@polypyrrole@MnO2 sponge as freestanding, compressible supercapacitor electrode. ACS Appl Mater Interfaces. 2014;6(7):5228–34. https://doi.org/10.1021/am500579c.

Ling YY, Huang QA, Zhu MS, Feng DX, Li XZ, Wei Y. A facile one-step electrochemical fabrication of reduced graphene oxide-mutilwall carbon nanotubes-phospotungstic acid composite for dopamine sensing. J Electroanal Chem. 2013;693:9–15. https://doi.org/10.1016/j.jelechem.2013.01.001.

Liu YC. Characteristics of vibration modes of polypyrrole on surface-enhanced Raman scattering spectra. J Electroanal Chem. 2004;571(2):255–64. https://doi.org/10.1016/j.jelechem.2004.05.015.

Ma X, Gao F, Dai R, Liu G, Zhang Y, Lu L, Yu Y. Novel electrochemical sensing platform based on a molecularly imprinted polymer-decorated 3D-multi-walled carbon nanotube intercalated graphene aerogel for selective and sensitive detection of dopamine. Analytical Methods. 2020;12(14):1845–51.

Mercante LA, Pavinatto A, Iwaki LE, Scagion VP, Zucolotto V, Oliveira ON Jr, Mattoso LH, Correa DS. Electrospun polyamide 6/poly(allylamine hydrochloride) nanofibers functionalized with carbon nanotubes for electrochemical detection of dopamine. ACS Appl Mater Interfaces. 2015;7(8):4784–90. https://doi.org/10.1021/am508709c.

Miodek A, Mejri N, Gomgnimbou M, Sola C, Korri-Youssoufi H. E-DNA sensor of Mycobacterium tuberculosis based on electrochemical assembly of nanomaterials (MWCNTs/PPy/PAMAM). Anal Chem. 2015;87(18):9257–64. https://doi.org/10.1021/acs.analchem.5b01761.

Njagi J, Chernov MM, Leiter JC, Andreescu S. Amperometric detection of dopamine in vivo with an enzyme based carbon fiber microbiosensor. Anal Chem. 2010;82(3):989–96. https://doi.org/10.1021/ac9022605.

Rabti A, Raouafi N, Merkoçi A. Bio(Sensing) devices based on ferrocene-functionalized graphene and carbon nanotubes. Carbon. 2016;108:481–514. https://doi.org/10.1016/j.carbon.2016.07.043.

Schultz W. Dopamine neurons and their role in reward mechanisms. Curr Opin Neurol. 1997;7(2):191–7. https://doi.org/10.1016/S0959-4388(97)80007-4.

Seenivasan R, Chang WJ, Gunasekaran S. Highly sensitive detection and removal of lead ions in water using cysteine-functionalized graphene oxide/polypyrrole nanocomposite film electrode. ACS Appl Mater Interfaces. 2015;7(29):15935–43. https://doi.org/10.1021/acsami.5b03904.

Si P, Chen H, Kannan P, Kim DH. Selective and sensitive determination of dopamine by composites of polypyrrole and graphene modified electrodes. Analyst. 2011;136(24):5134–8. https://doi.org/10.1039/c1an15772h.

Sun Y, He K, Zhang Z, Zhou A, Duan H. Real-time electrochemical detection of hydrogen peroxide secretion in live cells by Pt nanoparticles decorated graphene-carbon nanotube hybrid paper electrode. Biosens Bioelectron. 2015;68:358–64. https://doi.org/10.1016/j.bios.2015.01.017.

Tan C, Zhang W, Zheng J, You X, Lin X, Li S. Fabrication of metal-organic single crystalline nanowires and reduced graphene oxide enhancement for an ultrasensitive electrochemical biosensor. J Mater Chem B. 2015;3(35):7117–24. https://doi.org/10.1039/c5tb01199j.

Tang L, Du D, Yang F, Liang Z, Ning Y, Wang H, Zhang GJ. Preparation of graphene-modified acupuncture needle and its application in detecting neurotransmitters. Sci Rep. 2015;5:11627. https://doi.org/10.1038/srep11627.

Thirumalraj B, Palanisamy S, Chen SM, Lou BS. Preparation of highly stable fullerene C60 decorated graphene oxide nanocomposite and its sensitive electrochemical detection of dopamine in rat brain and pharmaceutical samples. J Colloid Interface Sci. 2016;462:375–81. https://doi.org/10.1016/j.jcis.2015.10.009.

Thirumalraj B, Rajkumar C, Chen SM, Palanisamy S. One-pot green synthesis of graphene nanosheets encapsulated gold nanoparticles for sensitive and selective detection of dopamine. Sci Rep. 2017;7:41213. https://doi.org/10.1038/srep41213.

Vellaichamy B, Periakaruppan P, Paulmony T. Evaluation of a new biosensor based on in situ synthesized PPy-Ag-PVP nanohybrid for selective detection of dopamine. J Phys Chem B. 2017;121(5):1118–27. https://doi.org/10.1021/acs.jpcb.6b11225.

Vinayan BP, Nagar R, Raman V, Rajalakshmi N, Dhathathreyan KS, Ramaprabhu S. Synthesis of graphene-multiwalled carbon nanotubes hybrid nanostructure by strengthened electrostatic interaction and its lithium ion battery application. J Mater Chem. 2012;22(19):9949–56. https://doi.org/10.1039/c2jm16294f.

Wang W, Xu G, Cui XT, Sheng G, Luo X. Enhanced catalytic and dopamine sensing properties of electrochemically reduced conducting polymer nanocomposite doped with pure graphene oxide. Biosens Bioelectron. 2014;58:153–6. https://doi.org/10.1016/j.bios.2014.02.055.

Wei W, Wang G, Yang S, Feng X, Mullen K. Efficient coupling of nanoparticles to electrochemically exfoliated graphene. J Am Chem Soc. 2015;137(16):5576–81. https://doi.org/10.1021/jacs.5b02284.

Woo S, Kim YR, Chung TD, Piao Y, Kim H. Synthesis of a graphene-carbon nanotube composite and its electrochemical sensing of hydrogen peroxide. Electrochim Acta. 2012;59:509–14. https://doi.org/10.1016/j.electacta.2011.11.012.

Yang L, Yang J, Xu B, Zhao F, Zeng B. Facile preparation of molecularly imprinted polypyrrole-graphene-multiwalled carbon nanotubes composite film modified electrode for rutin sensing. Talanta. 2016;161:413–8. https://doi.org/10.1016/j.talanta.2016.08.080.

Zhang W, Zheng J, Shi J, Lin Z, Huang Q, Zhang H, Wei C, Chen J, Hu S, Hao A. Nafion covered core-shell structured Fe3O4@graphene nanospheres modified electrode for highly selective detection of dopamine. Anal Chim Acta. 2015;853:285–90. https://doi.org/10.1016/j.aca.2014.10.032.