Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Một phương pháp đơn giản để xác định chiều dài của sông băng dựa trên Mô hình Độ cao Kỹ thuật số và ranh giới của sông băng cho loại lưu vực đơn giản
Tóm tắt
Chiều dài của sông băng là một yếu tố hình thái học quan trọng có nhiều ứng dụng trong lĩnh vực băng tuyết; tuy nhiên, việc xác định nó thường gặp khó khăn, đặc biệt là đối với những sông băng bao phủ diện tích lớn hơn hoặc những sông băng có sự thay đổi theo thời gian thường xuyên. Trong bài báo này, chúng tôi mô tả một phương pháp mới dựa trên ArcGIS có thể xác định các đường dòng chảy của sông băng để xác định chiều dài sông băng dựa trên mô hình độ cao kỹ thuật số và các đường viền của sông băng. Phương pháp này bao gồm (1) trích xuất các điểm cao nhất và thấp nhất trên sông băng, (2) tính toán các đường đồng mức cách nhau 10m trên sông băng từ độ cao 10m đến 100m, và (3) kết nối các điểm giữa của mỗi đường đồng mức với điểm cao nhất và điểm thấp nhất để tạo thành một đường dòng chảy, sau đó được làm mịn. Để đánh giá độ tin cậy của phương pháp này, chúng tôi đã thử nghiệm kết quả của thuật toán theo các đường dòng chảy được tính toán sử dụng số liệu thực địa, phân tích dữ liệu từ Danh mục Sông băng Trung Quốc và giải thích thủ công. Các dữ liệu này cho thấy phương pháp tự động mới là hiệu quả trong việc xác định các đường dòng chảy của sông băng khi các đường đồng mức tương đối lớn; đặc biệt, khi chúng nằm trong khoảng từ 70m đến 100m. Tuy nhiên, một trong những hạn chế chính của thuật toán là yêu cầu tự động xóa các đường cong lặp lại và đóng trong các quy trình xử lý trước. Ngoài việc tính toán các đường dòng chảy của sông băng để xác định chiều dài sông băng, phương pháp này cũng có thể được sử dụng để xác định hiệu quả sự thay đổi của đầu mối sông băng.
Từ khóa
#sông băng #chiều dài sông băng #mô hình độ cao kỹ thuật số #đường dòng chảy #thuộc tính băng tuyếtTài liệu tham khảo
Arendt A, Echelmeyer K, Harrison W, et al. (2006) Updated estimates of glacier volume changes in the western Chugach Mountains, Alaska, and a comparison of regional extrapolation methods. Journal of Geophysical Research 111: F03019. https://doi.org/10.1029/2005JF000436
Bolch T, Menounos B, Wheate RD (2010) Landsat-based inventory of glacier in western Canada, 1985-2005. Remote Sensing of Environment 114(1): 127–137. https://doi.org/10.1016/j.rse.2009.08.015
Callaghan TV, Johansson M, Key J, et al. (2011) Feedbacks and interactions: from the Arctic cyosphere to the climate system. AMBIO 40(1): 75–86. https://doi.org/10.1007/s13280-011-0 215-8
Duan JP, Wang LL, Ren JW, et al. (2009) Progress in glacier variations in China and its sensitivity to climatic change during the past century. Progress in Geography 28(2): 231–237. (In Chinese)
Farinotti D, Huss M, Bauder A, et al. (2009) An estimate of the glacier ice volume in the Swiss Alps. Global and Planetary Change 68(3): 225–231. https://doi.org/10.1016/j.gloplacha.2009.05.004
Frauenfelder R, Kääb A (2009) Glacier mapping from multitemporal optical remote sensing data within the Brahmaputra river Basin. Proc. 33rd int. Symposium on Remote Sensing of Environment, 4-8, Stress, Italy, abstract number 299.
Gardelle J, Berthier E, Arnaud Y (2012) Slight mass gain of Karakoram glaciers in the early twenty-first century. Nature Geoscience 5(5): 322–325. https://doi.org/10.1038/ngeo1450
Georges C (2004) The 20th century glacier fluctuations in the tropical Cordillera Blanca, Peru. Arctic, Antarctic and Alpine Research 36(1): 100–107. https://doi.org/10.1657/1523-0430(2004)036
Guo WQ, Liu SY, Xu JL, et al. (2012) Monitoring recent surging of the Yulinchuan Glacier on north slopes of Muztag Range by remote sensing. Journal of Glaciology and Geocryology 34(4): 765–774. (In Chinese)
Hagg W, Mayer C, Lambrecht A, et al. (2013) Glacier changes in the Big Naryn basin, Central Tian Shan. Global and Planetary Change 110: 40–50. https://doi.org/10.1016/j.gloplacha.2012.07.010
Haq MA, Jain K, Menon KPR (2012) Change Change monitoring of Gangotri Glacier using remote sensing. International Journal of Soft Computing and Engineering 1(6): 259–261
Holobâcă IH (2013) Glacier mapper-a new method designed to assess change in mountain glaciers. International Journal of Remote Sensing 34(23): 8475–8490. https://doi.org/10.1080/01431161.2013.843804
He Y, Yang TB, Ji Q, et al. (2015) Glacier variation in response to climate change in Chinese Tianshan Mountains from 1989 to 2012. Journal of Mountain Science 12(5): 1189–1202. https://doi.org/10.1007/s11629-015-3445-6
Hewitt K (1969) Glacier surges in the Karakoram Himalaya (central Asia). Canadian Journal of Earth Sciences 6(4): 1009–1018.
Huang MH, Sun ZZ, Liu ZX (1981) The motion study of glacier terminus in Pakistan Torah glacier. Chinese Science Bulletin 8: 494–496. (In Chinese)
Ji Q, Yang TB, Tian HZ, et al. (2014) Relationship between glacier retreat and climate change in the western Nyainqêntanglha in the past 40 years. Journal of Arid Land Resources and Environment 28: 12–17. (In Chinese)
Ji Q, Yang TB, He Y, et al. (2016) Glacier changes in the eastern Nyainqêtanglha Range of Tibetan Plateau from 1975 to 2013. Journal of Mountain Science 13(4): 682–692. https://doi.org/10.1007/s1162015-3516-8
Jiang S, Yang TB, Tian HZ (2012) Glacier shrinkage and its dependence on climate in the Malan Mountain in past 40 years based on RS and GIS. Journal of Glaciology and Geocryology 34(3): 522–529. (In Chinese)
Jing ZF, Liu L, Zhou ZM, et al. (2011) Analysis on the influencing factors of glacier flow velocity: A case study of Qiyi Glacier in Qilian Mountains. Journal of Glaciology and Geocryology 33(6): 1222–1228. (In Chinese)
Kang XW, Feng ZK (2011) An introduction to ASTER GDEM and procedure reading. Remote Sensing Information 6: 69–72. (In Chinese)
Kienholz C, Rich JL, Arendt AA, et al. (2014) A new method for deriving glacier centerlines applied to glaciers in Alaska and northwest Canada. The Cryosphere 8(2): 503–519. https://doi.org/10.5194/tc-8-503-2014
Klein AG, Isacks BL (1999) Spectral mixture analysis of Landsat thematic mapper images applied to the detection of the transient snowline on tropical Andean glaciers. Global and Planetary Change 22(1–4):139–154. https://doi.org/10.1016/S0921-8181(99)00032-6
Le Bris R, Paul F (2013) An automatic method to create flow lines for determination of glacier length: A pilot study with Alaskan glaciers. Computers & Geosciences 52: 234–245. https://doi.org/10.1016/j.cageo.2012.10.014
Leclercq PW, Oerlemans J (2012) Global and hemispheric temperature reconstruction from glacier length fluctuations. Climate Dynamics 38(5–6): 1065–1079. https://doi.org/10.1007/s00382-011-1145-7
Li CX, Yang TB, Tian HZ (2015) Variation of western Kunlun Mountain glaciers monitored by remote sensing during 1976-2010. Mountain Research 32(2): 157–165. (In Chinese)
Li HL, Li ZQ, Qin DH (2009) Basic principles of glacial dynamic models and observation guide for corresponding parameters. Beijing: China Meteorological Press: 1–39
Li HL, Ng F, Li ZQ, et al. (2012) An extended “perfect-plasticity” method for estimating ice thickness along the flow line of mountain glaciers. Journal of Geophysical Research 117(F1): F01020. https://doi.org/10.1029/2011JF002104
Li SS, Zhang MJ, Li ZQ (2013) Variation of glacier terminuses in the Tianshan Mountains, China, during the period of 1960-2009. Arid Zone Research 30(2): 378–384. (In Chinese)
Li ZQ, Han TD, Jingzhe YF, et al. (2003) A summary of 40-Year observed variation facts of climate and Glacier No.1 at headwater of Urumqi River, Tianshan, China. Journal of Glaciology and Geocryology 25(2): 117–123. (In Chinese)
Li ZQ, Li HL, Chen YN (2011) Mechanisms and simulation of accelerated shrinkage of continental glaciers: A case study of Urumqi Glacier No.1 in eastern Tianshan, Central Asia. Journal of Earth Science 22(4): 423–430. https://doi.org/10.1007/s12583-011-0194-5
Li ZQ, Shen YP, Wang FT, et al. (2007) Response of melting ice to climate change in the Glacier No.1 at the headwaters of Urumqi River, Tianshan Mountain. Advances in Climate Change Research 3(3): 132–137. (In Chinese)
Melkonian AK, Willis MJ, Pritchard ME, et al. (2013) Satellitederived volume loss rates and glacier speeds for the Cordillera Darwin Icefield, Chile. The Cryosphere 7(3): 823–839. https://doi.org/10.5194/tc-7-823-2013
Narama C, Kääb A, Duishonakunov M, et al. (2010) Spatial variability of recent glacier area changes in the, Tien Shan Mountains, Central Asia, using Corona (~1970), Landsat (~2000), and ALOS (~2007) satellite data. Global and Planetary Change 71(1–2): 42–54. https://doi.org/10.1016/j.gloplacha.2009.08.002
Neckel N, Kropáček J, Bolch T, et al. (2014) Glacier mass changes on the Tibetan Plateau 2003-2009 derived from ICESat laser altimetry measurements. Environmental Research Letters 9(1): 014009. https://doi.org/10.1088/1748-9326/9/1/014009
Oerlemans J (1986) An attempt to simulate historic front variations of Nigardsbreen, Norway. Theoretical and Applied Climatology 37(3): 126–135
Oerlemans J (1994) Quantifying global warming from the retreat of glaciers. Science 264(5156): 243–244.
Oerlemans J, van Pelt WJJ (2015) A model study of Abrahamsenbreen, a surging glacier in northern Spitsbergen. The Cryosphere 9(2): 767–779. https://doi.org/10.5194/tc-9-767-2015
Qin DH, Ding YJ (2009) Cryopheric changes and their impacts: present, trends and key issues. Advances in Climate Change Research 5(4):187–195. (In Chinese)
Shangguan DH, Bolch T, Ding YJ, et al. (2015) Mass changes of Southern and Northern Inylchek Glacier, Central Tian Shan, Kyrgyzstan, during ~1975 and 2007 derived from remote sensing data. The Cryosphere 9(2): 703–717. https://doi.org/10.5194/tc-9-703-2015
Takeuchi N, Li ZQ (2008) Characteristics of surface dust on Urumqi Glacier No. 1 in the Tien Shan Mountains, China. Arctic, Antarctic, and Alpine Research 40(4): 744–750. https://doi.org/10.1657/1523-0430(07-094)
Tian HZ, Yang TB, Liu QP (2014) Climate change and glacier area shrinkage in the Qilian mountains, China, from 1956 to 2010. Annuals of Glaciology 55: 187–197. https://doi.org/10.3189/2014AoG66A045
Wang L, Li ZQ, Wang FT, et al. (2014) Glacier changes from 1964 to 2004 in the Jinghe River basin, Tien Shan. Cold Regions Science and Technology 102: 78–83. https://doi.org/10.1016/j.coldregions.2014.02.006
Wang NL, He JQ, Pu JC, et al. (2010) Variations in equilibrium line altitude of the Qiyi Glacier, Qilian Mountains, over the past 50 years. Chinese Science Bulletin 55(33): 3810–3817. https://doi.org/10.1007/s11434-010-4167-3
Wang PY, Li ZQ, Li HL (2011a) Ice volume changes and their characteristics for representative glacier against the background of climatic warming-A case study of Urumqi, Glacier No.1, Tianshan, China. Journal of nature resources 26(7): 1189–1198. (In Chinese)
Wang PY, Li ZQ, Cao M, et al. (2011b) Ice surface elevation changes of Glacier No.4 of Sigong River in Bogda Tianshan Mountains, during the last 50 years. Arid Land Geography 34(3): 464–470. (In Chinese)
Wang PY, Li ZQ, Wu LH, et al. (2012) Ice thickness and volume based on GPR, GPS and GIS: example from the Heigou Glacier No.8, Bogda-Peak region, Tianshan, China. Earth Science-Journal of China University of Geosciences 37: 179–187. (In Chinese)
Wang X, Florian S, Zhou AG, et al. (2013) Glacier and glacial lake changes and their relationship in the context of climate change, Central Tibetan Plateau 1972–2010. Global and Planetary Change 111: 246–257. https://doi.org/10.1016/j.gloplacha.2013.09.011
Wu GH, Zhang SY, Wang ZX (1983) Retreat and advance of modern glaciers in Bogda, Tianshan. Journal of Glaciology and Geocryology 5(3): 143–154. (In Chinese)
Yang W, Yao TD, Guo XF, et al. (2013) Mass balance of a maritime glacier on the southeast Tibetan Plateau and its climatic sensitivity. Journal of Geophysical Research: Atmospheres 118(17): 9579–9594. https://doi.org/10.1002/jgrd.50760
Yao HB, Li ZQ, Wang PY, et al. (2015) Area variation analysis of Urumqi Glacier No.1 in past 50 decades. Arid Zone Research 32(3): 442–447. (In Chinese)
Ye BS, Yang DQ, Jiao KQ, et al. (2005) The Urumqi River source Glacier No.1, Tianshan, China: Changes over the past 45 years. Geophysical Research Letters 32: L21504. https://doi.org/10.1029/2005GL024178
Zhang CM, Liu QS, Liu GH, et al. (2012) Data processing and application progress of SRTM 3 and ASTER GDEM. Geography and Geo-Information Science 28(5): 29–34. (In Chinese)
Zhu HY, Yang TB, Tian HZ (2013) Glacier variation in the Altun Mountains from 1973 to 2010. Geographical Research 32(8): 1430–1438. (In Chinese)
Zhang YS, Liu QS, Shangguan DH (2012) Ground multi-baseline digital photogrammetry for surveying the Heigou Glacier No.8 in the Mt. Bogda, Tianshan Mountains. Journal of Glaciology and Geocryology 34(5): 1184–1189. (In Chinese)