A simple infrared nanosensor array based on carbon nanoparticles

Frontiers of Optoelectronics - Tập 5 - Trang 266-270 - 2012
Junjie Dai1, Longyan Yuan1, Qize Zhong1, Fengchao Zhang1, Hongfei Chen1, Chao You1, Xiaohong Fan1, Bin Hu1, Jun Zhou1
1Wuhan National Laboratory for Optoelectronics (WNLO), College of Optoelectronic Science and Engineering, Huazhong University of Science and Technology, Wuhan, China

Tóm tắt

A simple (2×2) pixelated flexible infrared nanosensor array based on carbon nanoparticles (CNPs) was fabricated through a simple and low-cost flame method. By integrated with a micro controller unit, the sensor array could detect power density of incident infrared light in real-time. The mechanism for the superior infrared sensing property of the flexible sensor array based on CNP was also studied in detail in this work.

Tài liệu tham khảo

Takei K, Takahashi T, Ho J C, Ko H, Gillies A G, Leu PW, Fearing R S, Javey A. Nanowire active-matrix circuitry for low-voltage macroscale artificial skin. Nature Materials, 2010, 9(10): 821–826 Sekitani T, Noguchi Y, Hata K, Fukushima T, Aida T, Someya T. A rubberlike stretchable active matrix using elastic conductors. Science, 2008, 321(5895): 1468–1472 Ko H C, Stoykovich M P, Song J Z, Malyarchuk V, Choi W M, Yu C J, Geddes J B 3rd, Xiao J L, Wang S D, Huang Y G, Rogers J A. A hemispherical electronic eye camera based on compressible silicon optoelectronics. Nature, 2008, 454(7205): 748–753 Sekitani T, Yokota T, Zschieschang U, Klauk H, Bauer S, Takeuchi K, Takamiya M, Sakurai T, Someya T. Organic nonvolatile memory transistors for flexible sensor arrays. Science, 2009, 326(5959): 1516–1519 Yamada T, Hayamizu Y, Yamamoto Y, Yomogida Y, Izadi-Najafabadi A, Futaba D N, Hata K. A stretchable carbon nanotube strain sensor for human-motion detection. Nature Nanotechnology, 2011, 6(5): 296–301 Yuan L Y, Dai J J, Fan X H, Song T, Tao Y T, Wang K, Xu Z, Zhang J, Bai X D, Lu P X, Chen J, Zhou J, Wang Z L. Self-cleaning flexible infrared nanosensor based on carbon nanoparticles. ACS Nano, 2011, 5(5): 4007–4013 Xiao X, Yuan L, Zhong J, Ding T, Liu Y, Cai Z, Rong Y, Han H, Zhou J, Wang Z L. High-strain sensors based on ZnO nanowire/polystyrene hybridized flexible films. Advanced Materials, 2011, 23(45): 5440–5444 Yuan L Y, Tao Y T, Chen J, Dai J J, Song T, Ruan M Y, Ma Z W, Gong L, Liu K, Zhang X H, Hu X J, Zhou J, Wang Z L. Carbon nanoparticles on carbon fabric for flexible and high-performance field emitters. Advanced Functional Materials, 2011, 21(11): 2150–2154 McDonald S A, Konstantatos G, Zhang S G, Cyr P W, Klem E J D, Levina L, Sargent E H. Solution-processed PbS quantum dot infrared photodetectors and photovoltaics. Nature Materials, 2005, 4(2): 138–142 Johnston K W, Pattantyus-Abraham A G, Clifford J P, Myrskog S H, MacNeil D D, Levina L, Sargent E H. Schottky-quantum dot photovoltaics for efficient infrared power conversion. Applied Physics Letters, 2008, 92(15): 151115 Klem E J D, MacNeil D D, Levina L, Sargent E H. Solution processed photovoltaic devices with 2% infrared monochromatic power conversion efficiency: performance optimization and oxide formation. Advanced Materials, 2008, 20(18): 3433–3439 Xiao L, Zhang Y Y, Wang Y, Liu K, Wang Z, Li T Y, Jiang Z, Shi J P, Liu L A, Li Q Q, Zhao Y G, Feng Z H, Fan S S, Jiang K L. A polarized infrared thermal detector made from super-aligned multiwalled carbon nanotube films. Nanotechnology, 2011, 22(2): 025502 Rauch T, Boberl M, Tedde S F, Furst J, Kovalenko M V, Hesser G N, Lemmer U, Heiss W, Hayden O. Near-infrared imaging with quantum-dot-sensitized organic photodiodes. Nature Photonics, 2009, 3(6): 332–336 Schödel R, Ott T, Genzel R, Hofmann R, Lehnert M, Eckart A, Mouawad N, Alexander T, Reid M J, Lenzen R, Hartung M, Lacombe F, Rouan D, Gendron E, Rousset G, Lagrange A M, Brandner W, Ageorges N, Lidman C, Moorwood A F M, Spyromilio J, Hubin N, Menten K M. A star in a 15.2-year orbit around the supermassive black hole at the centre of the Milky Way. Nature, 2002, 419(6908): 694–696 Xu F L, Liu X, Fujimura K. Pedestrian detection and tracking with night vision. IEEE Transactions on Intelligent Transportation Systems, 2005, 6(1): 63–71 Bachilo S M, Strano M S, Kittrell C, Hauge R H, Smalley R E, Weisman R B. Structure-assigned optical spectra of single-walled carbon nanotubes. Science, 2002, 298(5602): 2361–2366 Freitag M, Martin Y, Misewich J A, Martel R, Avouris P H. Photoconductivity of single carbon nanotubes. Nano Letters, 2003, 3(8): 1067–1071 Itkis M E, Borondics F, Yu A P, Haddon R C. Bolometric infrared photoresponse of suspended single-walled carbon nanotube films. Science, 2006, 312(5772): 413–416 Pradhan B, Setyowati K, Liu H Y, Waldeck D H, Chen J. Carbon nanotube-polymer nanocomposite infrared sensor. Nano Letters, 2008, 8(4): 1142–1146 Liu H P, Ye T, Mao C D. Fluorescent carbon nanoparticles derived from candle soot. Angewandte Chemie International Edition, 2007, 46(34): 6473–6475 Yang S T, Cao L, Luo P G J, Lu F S, Wang X, Wang H F, Meziani M J, Liu Y F, Qi G, Sun Y P. Carbon dots for optical imaging in vivo. Journal of the American Chemical Society, 2009, 131(32): 11308–11309 Ferrari A C, Meyer J C, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, Piscanec S, Jiang D, Novoselov K S, Roth S, Geim A K. Raman spectrum of graphene and graphene layers. Physical Review Letters, 2006, 97(18): 187401 Pimenta M A, Dresselhaus G, Dresselhaus M S, Cançado L G, Jorio A, Saito R. Studying disorder in graphite-based systems by Raman spectroscopy. Physical Chemistry Chemical Physics, 2007, 9(11): 1276–1291