Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Một đặc trưng đơn giản của hệ thống truyền thông UAV
Tóm tắt
Các phương tiện bay không người lái (UAV) có tầm quan trọng lớn trên nhiều nền tảng nhờ khả năng triển khai nhanh chóng và thuận tiện. Để có cái nhìn sâu sắc về các hệ thống truyền thông hỗ trợ UAV, cần một mô hình kênh chính xác cho các kênh UAV. Chúng tôi đề xuất một mô hình kênh tổng quát cho liên kết UAV dựa trên mô hình alpha-beta, được sử dụng rộng rãi trong tài liệu. Cụ thể, chúng tôi rút ra biểu thức chuẩn hóa của hàm mật độ xác suất (PDF), hàm phân phối tích lũy (CDF), và các số momen của mô hình đề xuất. Thành phần bóng đổ được giả định tuân theo phân phối log-normal và thành phần đa đường được đặc trưng bằng sự trợ giúp của phân phối Nakagami-m. Xác suất mất mát của một hệ thống truyền thông dựa trên UAV cũng được xác định thông qua biểu thức CDF.
Từ khóa
#UAV #hệ thống truyền thông #mô hình kênh #hàm mật độ xác suất #phân phối log-normal #phân phối Nakagami-m #xác suất mất mát.Tài liệu tham khảo
E C Tetila, B B Machado, D A Guimares and H Pistori 2017 Identification of soybean foliar diseases using unmanned aerial vehicle images. IEEE Geosci. Remote Sens. Lett. 14(12): 2190–2194
S Chen, D F Laefer and E Mangina 2016 State of technology review of civilian UAVs. Recent Patents Eng. 10(3): 160–174
Roadmap for the integration of civil remotely-piloted aircraft systems into the European aviation system. 2013. In: EUROCONTROL, Brussels, Belgium, Tech. Rep.
SC-228, minimum operational performance standards for unmanned aircraft systems, radio tech. commission aeronautics. Washington,DC, USA, May 2013. http://www.rtca.org/content/sc228.
Drone Advisory Committee (DAC) 2016 radio Tech. Commission Aeronautics, Washington, DC, USA, 2016. http://www.rtca.org/content/drone-advisory-committee.
K Daniel, M Putzke, B Dusza and C Wietfeld 2010 Three dimensional channel characterization for low altitude aerial vehicles. In: Proceedings of the 7th International Symposium on Wireless Communication System (ISWCS), New York, UK, Sep. 2010, pp. 756–760
Q Feng, J McGeehan, E K Tameh and A R Nix 2006 Path loss models for air-to-ground radio channels in urban environments. In: Proceedings of the IEEE Vehicular Technology Conference (VTC-Spring), Melbourne, VIC, Australia, May 2006, pp. 2901–2905
A A Khuwaja, Y Chen, N Zhao, M S Alouini and P Dobbins, Fourth quarter 2018. IEEE Commun. Surv. Tutor. 20(4): 2804–2821
C Yan, L Fu, J Zhang and J Wang 2019 A comprehensive survey on UAV communication channel modeling. IEEE Access 7: 107769–107792
M R Bhatnagar and Arti M K 2013 Performance analysis of AF based hybrid satellite-terrestrial cooperative network over generalized fading channels. IEEE Commun. Lett. 17(10): 1912–1915
Arti M K 2016 Two-way satellite relaying with estimated channel gains. IEEE Trans. Commun. 64(7), 2808–2820
M R Bhatnagar 2015 Making two-way satellite relaying feasible: a differential modulation based approach. IEEE Trans. Commun. 63(8): 2836–2847
Arti M K and M R Bhatnagar 2014 Two-way mobile satellite relaying: a beamforming and combining based approach. IEEE Commun. Lett. 18(7): 1187–1190
M N Pachery and M R Bhatnagar 2020 Double differential modulation for LEO-based land mobile satellite communication. IEEE Trans. Aerosp. and Electron. Syst. 56(4): 3339–3346
Arti M K 2020 Product of squared SR random variables: application to satellite communication. IEEE Trans. Aerosp. Electron. Syst. 56(1): 486–496
Arti M K 2020 Data detection in multisatellite communication systems. IEEE Trans. Aerosp. Electron. Syst. 56(2), 1637–1644
W Lu, K An and T Liang 2019 Robust beamforming design for sum secrecy rate maximization in multibeam satellite systems. IEEE Trans. Aerosp. Electron. Syst. 55(3), 1568–1572
W Lu, K An, T Liang and X Yan 2020 Robust beamforming in multibeam satellite systems with non-orthogonal multiple access. IEEE Wirel. Commun. Lett. 9(11): 1889-1893
A AL-Hourani, S Chandrasekharan, G Kaandorp, W Glenn, A Jamalipour and S Kandeepan 2016 Coverage and rate analysis of aerial basestations. IEEE Trans. Aerosp. Electron. Syst. 52(6): 3077–3081
M Mozaffari, W Saad, M Bennis and M Debbah 2016 Efficient deployment of multiple unmanned aerial vehicles for optimal wireless coverage. IEEE Commun. Lett. 20(8): 1647–1650
D W Matolak and R Sun 2017 Air-ground channel characterization for unmanned aircraft systems-part i: Methods, measurements, and models for over-water settings, Dhillon, “Downlink coverage analysis for a finite 3-d wireless network of unmanned aerial vehicles. IEEE Trans. Commun. 65(10): 4543–4558, Oct. 2017. Trans. Veh. Technol. 66(3): 1913–1925
R Sun and D W Matolak 2017 Air-ground channel characterization for unmanned aircraft systems-part ii: Hilly and mountainous settings. IEEE Trans. Veh. Technol. 66(3): 1913–1925
D W Matolak and R Sun 2017 Air-ground channel characterization for unmanned aircraft systems-part iii: The suburban and near urban environments. IEEE Trans. Veh. Technol. 66(8): 6607–6618
M Wentz and M Stojanovic 2015 A MIMO radio channel model for low altitude air-to-ground communication systems. In: Proceedings of the IEEE Vehicular Technology Conference (VTC-Fall), Boston, MA, USA, pp. 1–6
V V Chetlur and H S Dhillon 2017 Downlink coverage analysis for a finite 3-d wireless network of unmanned aerial vehicles. IEEE Trans. Commun. 65(10): 4543–4558. Trans. Veh. Technol. 66(3): 1913–1925
R Amorim, H Nguyen, P Mogensen, I Z Kovcs, J Wigard and T B Srensen 2017 Radio channel modeling for UAV communication over cellular networks. IEEE Wireless Commun. Lett. 6(4): 514–517. Trans. Veh. Technol. 66(3): 1913–1925
C Yan, L Fu, J Zhang and J Wang 2017 A comprehensive survey on UAV communication channel modeling. IEEE Access 7: 107769–107792. https://doi.org/10.1109/ACCESS.2019.2933173. Trans. Veh. Technol. 66(3): 1913–1925
A A Khuwaja, Y Chen, N Zhao, M S Alouini and P Dobbins 2018 A survey of channel modeling for UAV communications. IEEE Commun. Surv. Tutor. 20(4): 2804–2821. https://doi.org/10.1109/COMST.2018.2856587
P S Bithas, V Nikolaidis, A G Kanatas and G K Karagiannidis 2020 UAV-to-ground communications: channel modeling and UAV selection. IEEE Trans. Commun. 68(8): 5135–5144. https://doi.org/10.1109/TCOMM.2020.2992040
X Fu, T Ding, R Peng and C L M Cheriet 2021 Joint UAV channel modeling and power control for 5G IoT networks. J. Wireless Com. Network 106: 2021 https://doi.org/10.1186/s13638-021-01988-2
T Bianco, N Palmieri and A F Ganazhapa 2021 Channel analysis in a realistic path loss model for drones support in wireless communications. In: Proceedings of the SPIE 11758, Unmanned Systems Technology XXIII, 117580J (8 June 2021). https://doi.org/10.1117/12.2589789
R Jia, Y Li, X Cheng and B Ai 2018 3d geometry-based uav-mimo channel modeling and simulation. China Commun. 15(12): 64-74
G Zhang, Q Wu, M Cui and R Zhang 2019 Securing UAV communications via joint trajectory and power control. IEEE Trans. Wirel. Commun. 18(2): 13761389
T Rappaport 2002 Wireless communications: principles and practice. In: Prentice Hall Communications Engineering and Emerging Technologies Series Upper Saddle River, NJ, USA: Prentice-Hall, 2002
W Khawaja, I Guvenc and D Matolak 2016 UWB channel sounding and modeling for UAV air-to-ground propagation channels. In: Proceedings of the IEEE Global Communications Conference, (GLOBECOM) Washington, DC, USA, Dec. 2016, pp 1–7
J Proakis 2013 Digital Communications 4th edition. Mcgraw Hill, USA
I S Gradshteyn and I M Ryzhik 2000 Table of integrals series and products. San Diego, CA, USA: Academic
