A simple bootstrap method for constructing nonparametric confidence bands for functions
Tóm tắt
Từ khóa
Tài liệu tham khảo
Efron, B. and Tibshirani, R. J. (1993). <i>An Introduction to the Bootstrap. Monographs on Statistics and Applied Probability</i> <b>57</b>. Chapman & Hall, New York.
Fan, J. and Yao, Q. (1998). Efficient estimation of conditional variance functions in stochastic regression. <i>Biometrika</i> <b>85</b> 645–660.
Härdle, W. and Marron, J. S. (1991). Bootstrap simultaneous error bars for nonparametric regression. <i>Ann. Statist.</i> <b>19</b> 778–796.
Ruppert, D., Wand, M. P. and Carroll, R. J. (2003). <i>Semiparametric Regression. Cambridge Series in Statistical and Probabilistic Mathematics</i> <b>12</b>. Cambridge Univ. Press, Cambridge.
Genovese, C. and Wasserman, L. (2008). Adaptive confidence bands. <i>Ann. Statist.</i> <b>36</b> 875–905.
Ruppert, D., Sheather, S. J. and Wand, M. P. (1995). An effective bandwidth selector for local least squares regression. <i>J. Amer. Statist. Assoc.</i> <b>90</b> 1257–1270.
Li, K.-C. (1989). Honest confidence regions for nonparametric regression. <i>Ann. Statist.</i> <b>17</b> 1001–1008.
Beran, R. (1987). Prepivoting to reduce level error of confidence sets. <i>Biometrika</i> <b>74</b> 457–468.
Hall, P. (1986). On the bootstrap and confidence intervals. <i>Ann. Statist.</i> <b>14</b> 1431–1452.
Horowitz, J. L. and Spokoiny, V. G. (2001). An adaptive, rate-optimal test of a parametric mean-regression model against a nonparametric alternative. <i>Econometrica</i> <b>69</b> 599–631.
Rice, J. (1984). Bandwidth choice for nonparametric regression. <i>Ann. Statist.</i> <b>12</b> 1215–1230.
Picard, D. and Tribouley, K. (2000). Adaptive confidence interval for pointwise curve estimation. <i>Ann. Statist.</i> <b>28</b> 298–335.
Genovese, C. R. and Wasserman, L. (2005). Confidence sets for nonparametric wavelet regression. <i>Ann. Statist.</i> <b>33</b> 698–729.
Hall, P., Kay, J. W. and Titterington, D. M. (1990). Asymptotically optimal difference-based estimation of variance in nonparametric regression. <i>Biometrika</i> <b>77</b> 521–528.
Müller, H.-G. and Stadtmüller, U. (1987). Estimation of heteroscedasticity in regression analysis. <i>Ann. Statist.</i> <b>15</b> 610–625.
Buckley, M. J., Eagleson, G. K. and Silverman, B. W. (1988). The estimation of residual variance in nonparametric regression. <i>Biometrika</i> <b>75</b> 189–199.
Gasser, T., Sroka, L. and Jennen-Steinmetz, C. (1986). Residual variance and residual pattern in nonlinear regression. <i>Biometrika</i> <b>73</b> 625–633.
Müller, H.-G. and Stadtmüller, U. (1993). On variance function estimation with quadratic forms. <i>J. Statist. Plann. Inference</i> <b>35</b> 213–231.
Munk, A., Bissantz, N., Wagner, T. and Freitag, G. (2005). On difference-based variance estimation in nonparametric regression when the covariate is high dimensional. <i>J. R. Stat. Soc. Ser. B Stat. Methodol.</i> <b>67</b> 19–41.
Härdle, W., Huet, S., Mammen, E. and Sperlich, S. (2004). Bootstrap inference in semiparametric generalized additive models. <i>Econometric Theory</i> <b>20</b> 265–300.
Sun, J. and Loader, C. R. (1994). Simultaneous confidence bands for linear regression and smoothing. <i>Ann. Statist.</i> <b>22</b> 1328–1345.
Ruppert, D. and Wand, M. P. (1994). Multivariate locally weighted least squares regression. <i>Ann. Statist.</i> <b>22</b> 1346–1370.
Claeskens, G. and Van Keilegom, I. (2003). Bootstrap confidence bands for regression curves and their derivatives. <i>Ann. Statist.</i> <b>31</b> 1852–1884.
Eubank, R. L. and Speckman, P. L. (1993). Confidence bands in nonparametric regression. <i>J. Amer. Statist. Assoc.</i> <b>88</b> 1287–1301.
Härdle, W. and Bowman, A. W. (1988). Bootstrapping in nonparametric regression: Local adaptive smoothing and confidence bands. <i>J. Amer. Statist. Assoc.</i> <b>83</b> 102–110.
Brown, L. D. and Levine, M. (2007). Variance estimation in nonparametric regression via the difference sequence method. <i>Ann. Statist.</i> <b>35</b> 2219–2232.
Cai, T. T. and Low, M. G. (2006). Adaptive confidence balls. <i>Ann. Statist.</i> <b>34</b> 202–228.
Hall, P. and Titterington, D. M. (1988). On confidence bands in nonparametric density estimation and regression. <i>J. Multivariate Anal.</i> <b>27</b> 228–254.
Xia, Y. (1998). Bias-corrected confidence bands in nonparametric regression. <i>J. R. Stat. Soc. Ser. B Stat. Methodol.</i> <b>60</b> 797–811.
Komlós, J., Major, P. and Tusnády, G. (1976). An approximation of partial sums of independent RV’s, and the sample DF. II. <i>Z. Wahrsch. Verw. Gebiete</i> <b>34</b> 33–58.
Giné, E. and Nickl, R. (2010). Confidence bands in density estimation. <i>Ann. Statist.</i> <b>38</b> 1122–1170.
Berry, S. M., Carroll, R. J. and Ruppert, D. (2002). Bayesian smoothing and regression splines for measurement error problems. <i>J. Amer. Statist. Assoc.</i> <b>97</b> 160–169.
Bjerve, S., Doksum, K. A. and Yandell, B. S. (1985). Uniform confidence bounds for regression based on a simple moving average. <i>Scand. J. Stat.</i> <b>12</b> 159–169.
Cai, T. T., Levine, M. and Wang, L. (2009). Variance function estimation in multivariate nonparametric regression with fixed design. <i>J. Multivariate Anal.</i> <b>100</b> 126–136.
Chen, S. X. (1996). Empirical likelihood confidence intervals for nonparametric density estimation. <i>Biometrika</i> <b>83</b> 329–341.
Chen, S. X., Härdle, W. and Li, M. (2003). An empirical likelihood goodness-of-fit test for time series. <i>J. R. Stat. Soc. Ser. B Stat. Methodol.</i> <b>65</b> 663–678.
Dette, H., Munk, A. and Wagner, T. (1998). Estimating the variance in nonparametric regression—what is a reasonable choice? <i>J. R. Stat. Soc. Ser. B Stat. Methodol.</i> <b>60</b> 751–764.
Eubank, R. L. and Wang, S. (1994). Confidence regions in non-parametric regression. <i>Scand. J. Stat.</i> <b>21</b> 147–158.
Hall, P. (1992a). Effect of bias estimation on coverage accuracy of bootstrap confidence intervals for a probability density. <i>Ann. Statist.</i> <b>20</b> 675–694.
Hall, P. (1992b). On bootstrap confidence intervals in nonparametric regression. <i>Ann. Statist.</i> <b>20</b> 695–711.
Hall, P. and Horowitz, J. (2013). Supplement to “A simple bootstrap method for constructing nonparametric confidence bands for functions.” <a href="DOI:10.1214/13-AOS1137SUPP">DOI:10.1214/13-AOS1137SUPP</a>.
Hall, P. and Marron, J. S. (1990). On variance estimation in nonparametric regression. <i>Biometrika</i> <b>77</b> 415–419.
Hall, P. and Owen, A. B. (1993). Empirical likelihood confidence bands in density estimation. <i>J. Comput. Graph. Statist.</i> <b>2</b> 273–289.
Härdle, W., Huet, S. and Jolivet, E. (1995). Better bootstrap confidence intervals for regression curve estimation. <i>Statistics</i> <b>26</b> 287–306.
Hoffmann, M. and Nickl, R. (2011). On adaptive inference and confidence bands. <i>Ann. Statist.</i> <b>39</b> 2383–2409.
Loh, W.-Y. (1987). Calibrating confidence coefficients. <i>J. Amer. Statist. Assoc.</i> <b>82</b> 155–162.
Massart, P. (1989). Strong approximation for multivariate empirical and related processes, via KMT constructions. <i>Ann. Probab.</i> <b>17</b> 266–291.
McMurry, T. L. and Politis, D. N. (2008). Bootstrap confidence intervals in nonparametric regression with built-in bias correction. <i>Statist. Probab. Lett.</i> <b>78</b> 2463–2469.
Mendez, G. and Lohr, S. (2011). Estimating residual variance in random forest regression. <i>Comput. Statist. Data Anal.</i> <b>55</b> 2937–2950.
Müller, U. U., Schick, A. and Wefelmeyer, W. (2003). Estimating the error variance in nonparametric regression by a covariate-matched $U$-statistic. <i>Statistics</i> <b>37</b> 179–188.
Müller, H.-G. and Zhao, P. L. (1995). On a semiparametric variance function model and a test for heteroscedasticity. <i>Ann. Statist.</i> <b>23</b> 946–967.
Neumann, M. H. (1994). Fully data-driven nonparametric variance estimators. <i>Statistics</i> <b>25</b> 189–212.
Neumann, M. H. (1995). Automatic bandwidth choice and confidence intervals in nonparametric regression. <i>Ann. Statist.</i> <b>23</b> 1937–1959.
Neumann, M. H. and Polzehl, J. (1998). Simultaneous bootstrap confidence bands in nonparametric regression. <i>J. Nonparametr. Stat.</i> <b>9</b> 307–333.
Schucany, W. R. and Sommers, J. P. (1977). Improvement of kernel type density estimators. <i>J. Amer. Statist. Assoc.</i> <b>72</b> 420–423.
Seifert, B., Gasser, T. and Wolf, A. (1993). Nonparametric estimation of residual variance revisited. <i>Biometrika</i> <b>80</b> 373–383.
Tong, T. and Wang, Y. (2005). Estimating residual variance in nonparametric regression using least squares. <i>Biometrika</i> <b>92</b> 821–830.
Tusnády, G. (1977). A remark on the approximation of the sample $DF$ in the multidimensional case. <i>Period. Math. Hungar.</i> <b>8</b> 53–55.