A simple bootstrap method for constructing nonparametric confidence bands for functions

Annals of Statistics - Tập 41 Số 4 - 2013
Peter Hall1,2, Joël L. Horowitz3
1UNIVERSITY OF CALIFORNIA AT DAVIS
2University of Melbourne
3University of Melbourne and University of California, and Northwestern University

Tóm tắt

Từ khóa


Tài liệu tham khảo

Efron, B. and Tibshirani, R. J. (1993). <i>An Introduction to the Bootstrap. Monographs on Statistics and Applied Probability</i> <b>57</b>. Chapman &amp; Hall, New York.

Fan, J. and Yao, Q. (1998). Efficient estimation of conditional variance functions in stochastic regression. <i>Biometrika</i> <b>85</b> 645–660.

Härdle, W. and Marron, J. S. (1991). Bootstrap simultaneous error bars for nonparametric regression. <i>Ann. Statist.</i> <b>19</b> 778–796.

Ruppert, D., Wand, M. P. and Carroll, R. J. (2003). <i>Semiparametric Regression. Cambridge Series in Statistical and Probabilistic Mathematics</i> <b>12</b>. Cambridge Univ. Press, Cambridge.

Genovese, C. and Wasserman, L. (2008). Adaptive confidence bands. <i>Ann. Statist.</i> <b>36</b> 875–905.

Low, M. G. (1997). On nonparametric confidence intervals. <i>Ann. Statist.</i> <b>25</b> 2547–2554.

Ruppert, D., Sheather, S. J. and Wand, M. P. (1995). An effective bandwidth selector for local least squares regression. <i>J. Amer. Statist. Assoc.</i> <b>90</b> 1257–1270.

Li, K.-C. (1989). Honest confidence regions for nonparametric regression. <i>Ann. Statist.</i> <b>17</b> 1001–1008.

Beran, R. (1987). Prepivoting to reduce level error of confidence sets. <i>Biometrika</i> <b>74</b> 457–468.

Hall, P. (1986). On the bootstrap and confidence intervals. <i>Ann. Statist.</i> <b>14</b> 1431–1452.

Horowitz, J. L. and Spokoiny, V. G. (2001). An adaptive, rate-optimal test of a parametric mean-regression model against a nonparametric alternative. <i>Econometrica</i> <b>69</b> 599–631.

Rice, J. (1984). Bandwidth choice for nonparametric regression. <i>Ann. Statist.</i> <b>12</b> 1215–1230.

Picard, D. and Tribouley, K. (2000). Adaptive confidence interval for pointwise curve estimation. <i>Ann. Statist.</i> <b>28</b> 298–335.

Genovese, C. R. and Wasserman, L. (2005). Confidence sets for nonparametric wavelet regression. <i>Ann. Statist.</i> <b>33</b> 698–729.

Hall, P., Kay, J. W. and Titterington, D. M. (1990). Asymptotically optimal difference-based estimation of variance in nonparametric regression. <i>Biometrika</i> <b>77</b> 521–528.

Müller, H.-G. and Stadtmüller, U. (1987). Estimation of heteroscedasticity in regression analysis. <i>Ann. Statist.</i> <b>15</b> 610–625.

Buckley, M. J., Eagleson, G. K. and Silverman, B. W. (1988). The estimation of residual variance in nonparametric regression. <i>Biometrika</i> <b>75</b> 189–199.

Gasser, T., Sroka, L. and Jennen-Steinmetz, C. (1986). Residual variance and residual pattern in nonlinear regression. <i>Biometrika</i> <b>73</b> 625–633.

Müller, H.-G. and Stadtmüller, U. (1993). On variance function estimation with quadratic forms. <i>J. Statist. Plann. Inference</i> <b>35</b> 213–231.

Munk, A., Bissantz, N., Wagner, T. and Freitag, G. (2005). On difference-based variance estimation in nonparametric regression when the covariate is high dimensional. <i>J. R. Stat. Soc. Ser. B Stat. Methodol.</i> <b>67</b> 19–41.

Härdle, W., Huet, S., Mammen, E. and Sperlich, S. (2004). Bootstrap inference in semiparametric generalized additive models. <i>Econometric Theory</i> <b>20</b> 265–300.

Sun, J. and Loader, C. R. (1994). Simultaneous confidence bands for linear regression and smoothing. <i>Ann. Statist.</i> <b>22</b> 1328–1345.

Ruppert, D. and Wand, M. P. (1994). Multivariate locally weighted least squares regression. <i>Ann. Statist.</i> <b>22</b> 1346–1370.

Claeskens, G. and Van Keilegom, I. (2003). Bootstrap confidence bands for regression curves and their derivatives. <i>Ann. Statist.</i> <b>31</b> 1852–1884.

Eubank, R. L. and Speckman, P. L. (1993). Confidence bands in nonparametric regression. <i>J. Amer. Statist. Assoc.</i> <b>88</b> 1287–1301.

Härdle, W. and Bowman, A. W. (1988). Bootstrapping in nonparametric regression: Local adaptive smoothing and confidence bands. <i>J. Amer. Statist. Assoc.</i> <b>83</b> 102–110.

Brown, L. D. and Levine, M. (2007). Variance estimation in nonparametric regression via the difference sequence method. <i>Ann. Statist.</i> <b>35</b> 2219–2232.

Cai, T. T. and Low, M. G. (2006). Adaptive confidence balls. <i>Ann. Statist.</i> <b>34</b> 202–228.

Hall, P. and Titterington, D. M. (1988). On confidence bands in nonparametric density estimation and regression. <i>J. Multivariate Anal.</i> <b>27</b> 228–254.

Xia, Y. (1998). Bias-corrected confidence bands in nonparametric regression. <i>J. R. Stat. Soc. Ser. B Stat. Methodol.</i> <b>60</b> 797–811.

Komlós, J., Major, P. and Tusnády, G. (1976). An approximation of partial sums of independent RV’s, and the sample DF. II. <i>Z. Wahrsch. Verw. Gebiete</i> <b>34</b> 33–58.

Giné, E. and Nickl, R. (2010). Confidence bands in density estimation. <i>Ann. Statist.</i> <b>38</b> 1122–1170.

Berry, S. M., Carroll, R. J. and Ruppert, D. (2002). Bayesian smoothing and regression splines for measurement error problems. <i>J. Amer. Statist. Assoc.</i> <b>97</b> 160–169.

Bjerve, S., Doksum, K. A. and Yandell, B. S. (1985). Uniform confidence bounds for regression based on a simple moving average. <i>Scand. J. Stat.</i> <b>12</b> 159–169.

Cai, T. T., Levine, M. and Wang, L. (2009). Variance function estimation in multivariate nonparametric regression with fixed design. <i>J. Multivariate Anal.</i> <b>100</b> 126–136.

Chen, S. X. (1996). Empirical likelihood confidence intervals for nonparametric density estimation. <i>Biometrika</i> <b>83</b> 329–341.

Chen, S. X., Härdle, W. and Li, M. (2003). An empirical likelihood goodness-of-fit test for time series. <i>J. R. Stat. Soc. Ser. B Stat. Methodol.</i> <b>65</b> 663–678.

Dette, H., Munk, A. and Wagner, T. (1998). Estimating the variance in nonparametric regression—what is a reasonable choice? <i>J. R. Stat. Soc. Ser. B Stat. Methodol.</i> <b>60</b> 751–764.

Eubank, R. L. and Wang, S. (1994). Confidence regions in non-parametric regression. <i>Scand. J. Stat.</i> <b>21</b> 147–158.

Hall, P. (1992a). Effect of bias estimation on coverage accuracy of bootstrap confidence intervals for a probability density. <i>Ann. Statist.</i> <b>20</b> 675–694.

Hall, P. (1992b). On bootstrap confidence intervals in nonparametric regression. <i>Ann. Statist.</i> <b>20</b> 695–711.

Hall, P. and Horowitz, J. (2013). Supplement to “A simple bootstrap method for constructing nonparametric confidence bands for functions.” <a href="DOI:10.1214/13-AOS1137SUPP">DOI:10.1214/13-AOS1137SUPP</a>.

Hall, P. and Marron, J. S. (1990). On variance estimation in nonparametric regression. <i>Biometrika</i> <b>77</b> 415–419.

Hall, P. and Owen, A. B. (1993). Empirical likelihood confidence bands in density estimation. <i>J. Comput. Graph. Statist.</i> <b>2</b> 273–289.

Härdle, W., Huet, S. and Jolivet, E. (1995). Better bootstrap confidence intervals for regression curve estimation. <i>Statistics</i> <b>26</b> 287–306.

Hoffmann, M. and Nickl, R. (2011). On adaptive inference and confidence bands. <i>Ann. Statist.</i> <b>39</b> 2383–2409.

Loh, W.-Y. (1987). Calibrating confidence coefficients. <i>J. Amer. Statist. Assoc.</i> <b>82</b> 155–162.

Massart, P. (1989). Strong approximation for multivariate empirical and related processes, via KMT constructions. <i>Ann. Probab.</i> <b>17</b> 266–291.

McMurry, T. L. and Politis, D. N. (2008). Bootstrap confidence intervals in nonparametric regression with built-in bias correction. <i>Statist. Probab. Lett.</i> <b>78</b> 2463–2469.

Mendez, G. and Lohr, S. (2011). Estimating residual variance in random forest regression. <i>Comput. Statist. Data Anal.</i> <b>55</b> 2937–2950.

Müller, U. U., Schick, A. and Wefelmeyer, W. (2003). Estimating the error variance in nonparametric regression by a covariate-matched $U$-statistic. <i>Statistics</i> <b>37</b> 179–188.

Müller, H.-G. and Zhao, P. L. (1995). On a semiparametric variance function model and a test for heteroscedasticity. <i>Ann. Statist.</i> <b>23</b> 946–967.

Neumann, M. H. (1994). Fully data-driven nonparametric variance estimators. <i>Statistics</i> <b>25</b> 189–212.

Neumann, M. H. (1995). Automatic bandwidth choice and confidence intervals in nonparametric regression. <i>Ann. Statist.</i> <b>23</b> 1937–1959.

Neumann, M. H. and Polzehl, J. (1998). Simultaneous bootstrap confidence bands in nonparametric regression. <i>J. Nonparametr. Stat.</i> <b>9</b> 307–333.

Schucany, W. R. and Sommers, J. P. (1977). Improvement of kernel type density estimators. <i>J. Amer. Statist. Assoc.</i> <b>72</b> 420–423.

Seifert, B., Gasser, T. and Wolf, A. (1993). Nonparametric estimation of residual variance revisited. <i>Biometrika</i> <b>80</b> 373–383.

Tong, T. and Wang, Y. (2005). Estimating residual variance in nonparametric regression using least squares. <i>Biometrika</i> <b>92</b> 821–830.

Tusnády, G. (1977). A remark on the approximation of the sample $DF$ in the multidimensional case. <i>Period. Math. Hungar.</i> <b>8</b> 53–55.

Wang, Y. D. and Wahba, G. (1995). Bootstrap confidence-intervals and for smoothing splines and their comparison to Bayesian confidence-intervals. <i>Comm. Statist. Simulation Comput.</i> <b>51</b> 263–279.