A simple and low-cost poly (dl-phenylalanine) modified carbon sensor for the improved electrochemical analysis of Riboflavin

N. Hareesha1, J.G. Manjunatha1
1Department of Chemistry, FMKMC College, Constituent College of Mangalore University, Madikeri, Karnataka, India

Tài liệu tham khảo

1998, 27 Masek, 2012, Characterization of the antioxidant activity of riboflavin in an elastomeric composite, C. R. Chimie., 15, 524, 10.1016/j.crci.2012.01.012 Sebrell, 1939, Riboflavin deficiency in man (ariboflavinosis), Publ. Health Rep., 54, 2121, 10.2307/4583104 Selvarajan, 2018, A facile synthesis of ZnO/Manganese hexacyano ferrate nanocomposite – modified electrode for the electrocatalytic sensing of riboflavin, J. Phys. Chem. Solids., 121, 350, 10.1016/j.jpcs.2018.06.005 Lopez-de-Alba, 2006, Simultaneous determination and classification of riboflavin, thiamine, nicotinamide and pyridoxine in pharmaceutical formulations, by UV-visible spectrophotometry and multivariate analysis, J. Braz. Chem. Soc., 17, 715, 10.1590/S0103-50532006000400012 Shen, 2005, Simultaneous determination of water-soluble vitamins C, B1, B2 and B6 in almonds by high performance liquid chromatography, Se Pu, 23, 538 Li, 2002, Simultaneous determination of nicotinamide, pyridoxine hydrochloride, thiamine mononitrate and riboflavin in multivitamin with minerals tablets by reversed-phase ion-pair high performance liquid chromatography, Biomed. Chromatogr., 16, 504, 10.1002/bmc.192 Franco, 2012, Application of CZE method in routine analysis for determination of B-complex vitamins in pharmaceutical and veterinary preparations, Int. J. Anal. Chem., 2012, 592, 10.1155/2012/592650 Patil, 2013, Development and validation of a liquid chromatography method for the simultaneous determination of eight water-soluble vitamins in multivitamin formulations and human urine, JAOAC (J. Assoc. Off. Anal. Chem.), 96, 1273 McMahon, 1985, The analysis of six common vitamins by laser desorption mass spectroscopy, Anal. Biochem., 147, 535, 10.1016/0003-2697(85)90311-2 Beitollahi, 2015, Construction of a nanostructure-based electrochemical sensor for voltammetric determination of bisphenol A, Environ. Monit. Assess., 187, 257, 10.1007/s10661-015-4506-6 Manjunatha, 2018, A novel poly (glycine) biosensor towards the detection of indigo carmine: a voltammetric study, J. Food Drug Anal., 26, 292, 10.1016/j.jfda.2017.05.002 Beitollahi, 2014, Voltammetric determination of hydroxylamine in water samples using a 1-benzyl-4-ferrocenyl-1H-[1, 2, 3]-triazole/carbon nanotube-modified glassy carbon electrode, Ionics, 20, 571, 10.1007/s11581-013-1004-0 Pushpanjali, 2019, The electrochemical resolution of ciprofloxacin, riboflavin and estriol using anionic surfactant and polymer-modified carbon paste electrode, ChemistrySelect, 4, 13427, 10.1002/slct.201903897 Beitollahi, 2019, A review on the effects of introducing CNTs in the modification process of electrochemical sensors, Electroanalysis, 31, 1195, 10.1002/elan.201800370 Charithra, 2020, Enhanced voltammetric detection of paracetamol by using carbon nanotube modified electrode as an electrochemical sensor, J. Electrochem. Sci. Eng., 10, 29, 10.5599/jese.717 Beitollahi, 2014, Application of a modified graphene nanosheet paste electrode for voltammetric determination of methyldopa in urine and pharmaceutical formulation, J. Anal. Sci. Technol., 5, 1 Amrutha, 2019, Electrochemical analysis of Evans blue by surfactant modified carbon nanotube paste electrode, J. Mater. Environ. Sci., 10, 668 Ma, 2013, Electrocatalytic determination of maltol in food products by cyclic voltammetry with a poly (L-phenylalanine) modified electrode, Anal. Methods, 5, 5823, 10.1039/c3ay41142g Hareesha, 2020, Fast and enhanced electrochemical sensing of dopamine at cost-effective poly(DL-phenylalanine) based graphite electrode, J. Electroanal. Chem., 114533, 10.1016/j.jelechem.2020.114533 Azab, 2017, The application of (bee glue) modified sensor in daclatasvir dual effect detection, New J. Chem., 41, 11846, 10.1039/C7NJ01517H Fekry, 2015, Novel electrochemical nicotine biosensor based on cerium nanoparticles with anionic surfactant, RSC Adv., 5, 51662, 10.1039/C5RA06024A Mielech, 2003, Simultaneous voltammetric determination of riboflavin and l-ascorbic acid in multivitamin pharmaceutical preparations, J. Trace Microprobe Tech., 21, 111, 10.1081/TMA-120017900 Lavirons, 1974, Adsorption, autoinhibition and autocatalysis in polarography and in linear potential sweep voltammetry, J. Electroanal. Chem., 52, 355, 10.1016/S0022-0728(74)80448-1 Hareesha, 2020, Elevated and rapid voltammetric sensing of riboflavin at poly (helianthin dye) blended carbon paste electrode with heterogeneous rate constant elucidation, J. Iran. Chem. Soc., 17, 1507 Girish, 2019, Determination of riboflavin at carbon nanotube paste electrodes modified with an anionic surfactant, ChemistrySelect, 4, 2168, 10.1002/slct.201803191 Sa, 2015, Electrochemical sensor based on bismuth-film electrode for voltammetric studies on vitamin B2 (riboflavin), Sens. Actuators B Chem., 209, 423, 10.1016/j.snb.2014.11.136 Gribat, 2017, New rotating disk hematite film electrode for riboflavin detection, J. Electroanal. Chem., 798, 42, 10.1016/j.jelechem.2017.05.008 Wegiel, 2018, Voltammetric characteristics and determination of riboflavin at the different metallic bulk annular band electrodes, J. Electrochem. Soc., 165, H393, 10.1149/2.1201807jes Riberio, 2011, Chemical stability of vitamins thiamine, riboflavin, pyridoxine and ascorbic acid in parentral nutrition for neonatal use, Nutr. J., 10, 1