A simple and affordable method for estimating the fluid volume a mosquito sucks using food dyes
Tóm tắt
Blood-sucking by mosquitoes is an inevitable behavior when pathogens are transmitted among humans. Adenine nucleotides such as ATP are known as phagostimulants for mosquitoes and are widely used to induce and enhance the blood-sucking activity in an artificial manner. Although using ATP solution is convenient to introduce a variety of substances (for example chemicals and pathogens) into the mosquito body via sucking, establishing an easy and cost-effective method to quantify the amount of solution ingested has yet to be reported. A set of commercial food dyes (green, blue, yellow, and red) was employed in this study. Each dye was added to ATP solution used to colorize the abdomen of Ae. aegypti female mosquitoes after ingestion. The intake of food dyes did not show any toxicity to the mosquitoes, affecting neither ATP-sucking behavior nor survival of the mosquitoes. We observed that quantifying the color intensity of green dye in the mosquito abdomen by spectral analysis, as well as distinguishing the size of the colored abdomen using the naked eye, allowed the estimation of the amount of ingested solution. Using this method, capsaicin, a pungent component of chili peppers, was identified as an aversive tastant that can discourage mosquitoes from sucking the ATP solution. Employing commercially available, non-toxic food dyes converted ATP-driven membrane feeding into an easy-to-use method to estimate the amount of solution ingested by mosquitoes. This method can be further applied for a variety of experiments such as introducing a certain quantity of chemical compounds or microbes into the mosquito body.
Tài liệu tham khảo
Leta S, Beyene TJ, De Clercq EM, Amenu K, Kraemer MUG, Revie CW. Global risk mapping for major diseases transmitted by Aedes aegypti and Aedes albopictus. Int J Infect Dis. 2018;67:25–35.
Cheng G, Liu Y, Wang P, Xiao X. Mosquito defense strategies against viral infection. Trends Parasitol. 2016;32(3):177–86.
Wu P, Yu X, Wang P, Cheng G. Arbovirus lifecycle in mosquito: acquisition, propagation and transmission. Expert Rev Mol Med. 2019;21:e1.
Okech BA, Gouagna LC, Kabiru EW, Beier JC, Yan G, Githure JI. Influence of age and previous diet of Anopheles gambiae on the infectivity of natural Plasmodium falciparum gametocytes from human volunteers. J Insect Sci. 2004;4:33.
Rivera-Perez C, Clifton ME, Noriega FG. How micronutrients influence the physiology of mosquitoes. Curr Opin Insect Sci. 2017;23:112–7.
Hosoi T. Identification of blood components which induce gorging of the mosquito. J Insect Physiol. 1959;3:191–218.
Galun R, Avi-Dor Y, Bar-Zeev M. Feeding response in Aedes aegypti: stimulation by adenosine triphosphate. Science. 1963;142(3600):1674–5.
Galun R. Feeding stimuli and artificial feeding. Bull Wld Hlth Org. 1967;36:590–3.
Galun R, Koontz LC, Gwadz RW, Ribeiro JMC. Effect of ATP analogues on the gorging response of Aedes aegypti. Physiol Entomol. 1985;10:275–81.
Romano D, Stefanini C, Canale A, Benelli G. Artificial blood feeders for mosquito and ticks-where from, where to? Acta Trop. 2018;183:43–56.
Tsurukawa C, Kawada H. Experiment on mosquito blood feeding using the artificial feeding device. Med Entomol Zool. 2014;65(3):151–5.
Siria DJ, Batista EPA, Opiyo MA, Melo EF, Sumaye RD, Ngowo HS, et al. Evaluation of a simple polytetrafluoroethylene (PTFE)-based membrane for blood-feeding of malaria and dengue fever vectors in the laboratory. Parasit Vectors. 2018;11(1):236.
Luo YP. A novel multiple membrane blood-feeding system for investigating and maintaining Aedes aegypti and Aedes albopictus mosquitoes. J Vector Ecol. 2014;39(2):271–7.
Costa-da-Silva AL, Navarrete FR, Salvador FS, Karina-Costa M, Ioshino RS, Azevedo DS, et al. Glytube: a conical tube and parafilm M-based method as a simplified device to artificially blood-feed the dengue vector mosquito, Aedes aegypti. PLoS One. 2013;8(1):e53816.
Witmer K, Sherrard-Smith E, Straschil U, Tunnicliff M, Baum J, Delves M. An inexpensive open source 3D-printed membrane feeder for human malaria transmission studies. Malar J. 2018;17(1):282.
Buchman A, Gamez S, Li M, Antoshechkin I, Li HH, Wang HW, et al. Engineered resistance to Zika virus in transgenic Aedes aegypti expressing a polycistronic cluster of synthetic small RNAs. Proc Natl Acad Sci U S A. 2019;116(9):3656–61.
H Briegel, AO Lea and MJ Klowden. Hemoglobinometry as a method for measuring blood meal sizes of mosquitoes (Diptera: Culicidae) J Med Entomol. 1979;15(3):235-8.
Redington BC, Hockmeyer WT. A method for estimating blood meal volume in Aedes aegypti using a radioisotope. J Insect Physiol. 1976;22(7):961–6.
Liesch J, Bellani LL, Vosshall LB. Functional and genetic characterization of neuropeptide Y-like receptors in Aedes aegypti. PLoS Negl Trop Dis. 2013;7(10):e2486.
LB Duvall, L Ramos-Espiritu, KE Barsoum, JF Glickman and LB Vosshall. Small-molecule agonists of Ae. aegypti neuropeptide Y receptor block mosquito biting. Cell. 2019;176(4):687-701 e5.
Summers T, Holec S, Burrell BD. Physiological and behavioral evidence of a capsaicin-sensitive TRPV-like channel in the medicinal leech. J Exp Biol. 2014;217(Pt 23):4167–73.
Al-Anzi B, Tracey WD Jr, Benzer S. Response of Drosophila to wasabi is mediated by painless, the fly homolog of mammalian TRPA1/ANKTM1. Curr Biol. 2006;16(10):1034–40.
Gonzales KK, Rodriguez SD, Chung HN, Kowalski M, Vulcan J, Moore EL, et al. The effect of SkitoSnack, an artificial blood meal replacement, on Aedes aegypti life history traits and gut microbiota. Sci Rep. 2018;8(1):11023.
Kandel Y, Mitra S, Jimenez X, Rodriguez SD, Romero A, Blakely BN, et al. Long-term mosquito culture with SkitoSnack, an artificial blood meal replacement. PLoS Negl Trop Dis. 2020;14(9):e0008591.
Kim BH, Kim HK, Lee SJ. Experimental analysis of the blood-sucking mechanism of female mosquitoes. J Exp Biol. 2011;214(Pt 7):1163–9.
Baughman T, Peterson C, Ortega C, Preston SR, Paton C, Williams J, et al. A highly stable blood meal alternative for rearing Aedes and Anopheles mosquitoes. PLoS Negl Trop Dis. 2017;11(12):e0006142.