A silicon-based nuclear spin quantum computer
Tóm tắt
Từ khóa
Tài liệu tham khảo
Shor, P. W. in Proc. 35th Annu. Symp. Foundations of Computer Science (ed. Goldwasser, S.) 124–134 (IEEE Computer Society, Los Alamitos, CA, 1994).
Ekert, A. & Jozsa, R. Quantum computation and Shor's factoring algorithm. Rev. Mod. Phys. 68, 733–753 (1996).
Grover, L. K. Quantum mechanics helps in searching for a needle in a haystack. Phys. Rev. Lett. 79, 325–328 (1997).
Calderbank, A. R. & Shor, P. W. Good quantum error correcting codes exist. Phys. Rev. A 54, 1098–1105 (1996).
Gershenfeld, N. A. & Chuang, I. L. Bulk spin-resonance quantum computation. Science 275, 350–356 (1997).
Cory, D. G., Fahmy, A. F. & Havel, T. F. Ensemble quantum computing by NMR spectroscopy. Proc. Natl Acad. Sci. USA 94, 1634–1639 (1997).
Loss, D. & DiVincenzo, D. P. Quantum computation with quantum dots. Phys. Rev. A 57, 120–126 (1998).
Privman, V., Vagner, I. D. & Kventsel, G. Quantum computation in quantum Hall systems. Phys. Lett. A 239, 141–146 (1998)..
Dobers, M., Klitzing, K. v., Schneider, J., Weimann, G. & Ploog, K. Electrical detection of nuclear magnetic resonance in GaAs-AlxGa1−xAs heterostructures. Phys. Rev. Lett. 61, 1650–1653 (1988).
Stich, B., Greulich-Weber, S. & Spaeth, J.-M. Electrical detection of electron nuclear double resonance in silicon. Appl. Phys. Lett. 68, 1102–1104 (1996).
Kane, B. E., Pfeiffer, L. N. & West, K. W. Evidence for an electric-field-induced phase transition in a spin-polarized two-dimensional electron gas. Phys. Rev. B 46, 7264–7267 (1992).
Wald, K. W., Kouwenhoven, L. P., McEuen, P. L., van der Vaart, N. C. & Foxon, C. T. Local dynamic nuclear polarization using quantum point contacts. Phys. Rev. Lett. 73, 1011–1014 (1994).
Dixon, D. C., Wald, K. R., McEuen, P. L. & Melloch, M. R. Dynamic polarization at the edge of a two-dimensional electron gas. Phys. Rev. B 56, 4743–4750 (1997).
CRC Handbook of Chemistry and Physics 77th edn 11–38 (CRC Press, Boca Raton, Florida, 1996).
Feher, G. Electron spin resonance on donors in silicon. I. Electronic structure of donors by the electron nuclear double resonance technique. Phys. Rev. 114, 1219–1244 (1959).
Wilson, D. K. & Feher, G. Electron spin resonance experiments on donors in silicon. III. Investigation of excited states by the application of uniaxial stress and their importance in relaxation processes. Phys. Rev. 124, 1068–1083 (1961).
Waugh, J. S. & Slichter, C. P. Mechanism of nuclear spin-lattice relaxation in insulators at very low temperatures. Phys. Rev. B 37, 4337–4339 (1988).
Kohn, W. Solid State Physics Vol. 5(eds Seitz, F. & Turnbull, D.) 257–320 (Academic, New York, 1957).
DiVincenzo, D. P. Two-bit gates are universal for quantum computation. Phys. Rev. A 51, 1015–1021 (1995).
Herring, C. & Flicker, M. Asymptotic exchange coupling of two hydrogen atoms. Phys. Rev. 134, A362–A366 (1964).
Andres, K., Bhatt, R. N., Goalwin, P., Rice, T. M. & Walstedt, R. E. Low-temperature magnetic susceptibility of Si:P in the nonmetallic region. Phys. Rev. B 24, 244–260 (1981).
Ashcroft, N. W. & Mermin, N. D. in Solid State PhysicsCh. 32 (Saunders College, Philadelphia, 1976).
Larsen, D. M. Stress dependence of the binding energy of D− centers in Si. Phys. Rev. B 23, 5521–5526 (1981).
Larsen, D. M. & McCann, S. Y. Variational studies of two- and three-dimensional D− centers in magnetic fields. Phys. Rev. B 46, 3966–3970 (1992).
Abragam, A. Principles of Nuclear Magnetism (Oxford Univ. Press, London, 1961).
Lyding, J. W. UHV STM nanofabrication: progress, technology spin-offs, and challenges. Proc. IEEE 85, 589–600 (1997).