A short convergence proof for a class of ant colony optimization algorithms

IEEE Transactions on Evolutionary Computation - Tập 6 Số 4 - Trang 358-365 - 2002
T. Stutzle1, M. Dorigo2
1Intellectics Group, Computer Science Department, Darmstadt University of Technology, Darmstadt, Germany
2Institut de Recherches Interdisciplinaires et de Développements en Intelligence Artificielle, Université Libre de Bruxelles, Belgium

Tóm tắt

We prove some convergence properties for a class of ant colony optimization algorithms. In particular, we prove that for any small constant /spl epsiv/ > 0 and for a sufficiently large number of algorithm iterations t, the probability of finding an optimal solution at least once is P*(t) /spl ges/ 1 - /spl epsiv/ and that this probability tends to 1 for t/spl rarr//spl infin/. We also prove that, after an optimal solution has been found, it takes a finite number of iterations for the pheromone trails associated to the found optimal solution to grow higher than any other pheromone trail and that, for t/spl rarr//spl infin/, any fixed ant will produce the optimal solution during the tth iteration with probability P /spl ges/ 1 /spl epsiv//spl circ/(/spl tau//sub min/, /spl tau//sub max/), where /spl tau//sub min/ and /spl tau//sub max/ are the minimum and maximum values that can be taken by pheromone trails.

Từ khóa

#Convergence #Ant colony optimization #Approximation algorithms #Heuristic algorithms #Resource management #Optimal control #Learning #Stochastic processes #Terrorism #Humans

Tài liệu tham khảo

10.1007/0-306-48056-5_9 grassé, 1959, la reconstruction du nid et les coordinations interindividuelles chez <emph>bellicositermes natalensis et cubitermes sp. </emph> la th&eacute;orie de la stigmergie: essai d'interpr&eacute;tation du comportement des termites constructeurs, Insectes Sociaux, 6, 41, 10.1007/BF02223791 10.1016/S0020-0190(01)00258-7 gutjahr, 1999, A generalized convergence result for the graph-based ant system metaheuristic 10.1016/S0167-739X(00)00044-3 10.1287/moor.13.2.311 10.1162/106454602320184202 romeo, 1991, a theoretical framework for simulated annealing, Algorithmica, 6, 302, 10.1007/BF01759049 10.1109/ICEC.1997.592327 stützle, 2000, <formula><tex>${\cal max}$</tex></formula>-<formula> <tex>${\cal min}$</tex></formula> ant system, Future Gener Comput Syst, 16, 889, 10.1016/S0167-739X(00)00043-1 10.1016/S0167-739X(00)00042-X dorigo, 1992, Optimization learning and natural algorithms 10.1162/106454699568728 10.1109/CEC.1999.782657 dorigo, 1991, Positive feedback as a search strategy 10.1109/4235.585892 bullnheimer, 1999, a new rank-based version of the ant system: a computational study, Central Eur J Oper Res Econom, 7, 25 birattari, 2000, For a formal foundation of the ant programming approach to combinatorial optimization Part 1 The problem the representation and the general solution strategy 10.1109/3477.484436