A shear modified enhanced Gurson constitutive relation and implications for localization
Tài liệu tham khảo
Acharyya, 2008, A complete GTN model for prediction of ductile failure of pipe, J. Mater. Sci., 43, 1897, 10.1007/s10853-007-2369-0
Argon, 1975, Separation of inclusions in spheroidized 1045 steel, Cu-0.6% Cr alloy, and maraging steel in plastic straining, Metall. Trans., 6A, 839, 10.1007/BF02672307
Baltic, 2021, Machine learning assisted calibration of a ductile fracture locus model, Mater. Des., 203, 10.1016/j.matdes.2021.109604
Barsoum, 2011, Micromechanical analysis on the influence of the Lode parameter on void growth and coalescence, Int. J. Solids Struct., 48, 925, 10.1016/j.ijsolstr.2010.11.028
Becker, 1986, Effect of yield surface curvature on necking and failure in porous solids, J. Appl. Mech., 53, 491, 10.1115/1.3171801
Benzerga, 2002, Micromechanics of coalescence in ductile fracture, J. Mech. Phys. Solids, 50, 1331, 10.1016/S0022-5096(01)00125-9
Benzerga, 1999, Coalescence–controlled anisotropic ductile fracture, J. Eng. Mater. Technol., 121, 221, 10.1115/1.2812369
Bergo, 2021, Micromechanical modelling of ductile fracture in pipeline steel using a bifurcation-enriched porous plasticity model, Int. J. Fract., 227, 57, 10.1007/s10704-020-00495-7
Besson, 2003, Modeling of plane strain ductile rupture, Int. J. Plast., 19, 1517, 10.1016/S0749-6419(02)00022-0
Brocks, 1995, Verification of the transferability of micromechanical parameters by cell model calculations with visco–plastic materials, Int. J. Plast., 11, 971, 10.1016/S0749-6419(95)00039-9
Cadet, 2022, Strain localization analysis in materials containing randomly distributed voids: Competition between extension and shear failure modes, J. Mech. Phys. Solids, 166, 10.1016/j.jmps.2022.104933
Chu, 1980, Void nucleation effects in biaxially stretched sheets, J. Eng. Mater. Technol., 102, 249, 10.1115/1.3224807
Dæhli, 2018, A lode-dependent Gurson model motivated by unit cell analyses, Eng. Fract. Mech., 190, 299, 10.1016/j.engfracmech.2017.12.023
Dæhli, 2022, Ductile failure predictions using micromechanically-based computational models, J. Mech. Phys. Solids, 164, 10.1016/j.jmps.2022.104873
Dittmanna, 2020, Phase-field modeling of porous-ductile fracture in non-linear thermo-elasto-plastic solids, Comput. Methods Appl. Mech. Engrg., 261
Dunand, 2014, Effect of Lode parameter on plastic flow localization after proportional loading at low stress triaxialities, J. Mech. Phys. Solids, 66, 133, 10.1016/j.jmps.2014.01.008
Gholipoura, 2019, Experimental and numerical investigation of ductile fracture using GTN damage model on in-situ tensile tests, Int. J. Mech. Sci., 164
Gologanu, 1994, Approximate models for ductile metals containing non–spherical voids – case of axisymmetric oblate ellipsoidal cavities, J. Eng. Mater. Technol., 116, 290, 10.1115/1.2904290
Gologanu, 1997, Recent extensions of Gurson’s model for porous ductile metals, 61
Goods, 1979, The nucleation of cavities by plastic deformation, Acta Metall., 27, 1, 10.1016/0001-6160(79)90051-8
Gurland, 1972, Observations on the fracture of cementite particles in a spheroidized 1.05%C steel deformed at room temperature, Acta Metall., 20, 735, 10.1016/0001-6160(72)90102-2
Gurson, 1977, Continuum theory of ductile rupture by void nucleation and growth: part I– yield criteria and flow rules for porous ductile media, J. Eng. Mater. Technol., 99, 2, 10.1115/1.3443401
Hadamard, 1903
He, 2021, An improved shear modified GTN model for ductile fracture of aluminium alloys under different stress states and its parameters identification, Int. J. Mech. Sci., 192, 10.1016/j.ijmecsci.2020.106081
Kamia, 2015, Numerical determination of the forming limit curves of anisotropic sheet metals using gtn damage model, J. Mater. Proc. Tech., 216, 472, 10.1016/j.jmatprotec.2014.10.017
Koplik, 1988, Void growth and coalescence in porous plastic solids, Int. J. Solids Struct., 24, 835, 10.1016/0020-7683(88)90051-0
Luo, 2018, On the prediction of ductile fracture by void coalescence and strain localization, J. Mech. Phys. Solids, 113, 82, 10.1016/j.jmps.2018.02.002
Malcher, 2014, An extended GTN model for ductile fracture under high and low stress triaxiality, Int. J. Plast., 54, 193, 10.1016/j.ijplas.2013.08.015
Marciniak, 1967, Limit strains in the processes of stretch-forming sheet metal, Int. J. Mech. Sci., 9, 609, 10.1016/0020-7403(67)90066-5
Marouani, 2012, Identification of material parameters of the Gurson-Tvergaard-Needleman damage law by combined experimental, numerical sheet metal blanking techniques and artificial neural networks approach, Int. J. Mater. Form., 5, 147, 10.1007/s12289-011-1035-x
Morin, 2018, On the description of ductile fracture in metals by the strain localization theory, Int. J. Fract., 209, 27, 10.1007/s10704-017-0236-9
Nahshon, 2008, Modification of the Gurson model for shear failure, Eur. J. Mech. A, 27, 1, 10.1016/j.euromechsol.2007.08.002
Needleman, 1987, A continuum model for void nucleation by inclusion debonding, J. Appl. Mech., 54, 525, 10.1115/1.3173064
Nguyen, 2021, Bayesian calibration of a physics-based crystal plasticity and damage model, J. Mech. Phys. Solids, 149, 10.1016/j.jmps.2020.104284
Nielsen, 2012, Collapse and coalescence of spherical voids subject to intense shearing: studied in full 3D, Int. J. Fract., 177, 97, 10.1007/s10704-012-9757-4
Nielsen, 2010, Ductile shear failure or plug failure of spot welds modelled by modified Gurson model, Eng. Fract. Mech., 77, 1031, 10.1016/j.engfracmech.2010.02.031
Nielsen, 2011, Failure by void coalescence in metallic materials containing primary and secondary voids subject to intense shearing, Int. J. Solids Struct., 48, 1255, 10.1016/j.ijsolstr.2011.01.008
Pardoen, 2000, An extended model for void growth and coalescence, J. Mech. Phys. Solids, 48, 2467, 10.1016/S0022-5096(00)00019-3
Peirce, 1984, A tangent modulus method for rate dependent solids, Comput. Struct., 18, 875, 10.1016/0045-7949(84)90033-6
Rice, 1976, The localization of plastic deformation, 207
Rice, 1969, On the enlargement of voids in triaxial stress fields, J. Mech. Phys. Solids, 17, 201, 10.1016/0022-5096(69)90033-7
Rousselier, 1987, Ductile fracture models and their potential in local approach of fracture, Nucl. Eng. Des., 105, 97, 10.1016/0029-5493(87)90234-2
Rousselier, 2022, Lode-dependent second porosity in porous plasticity for shear-dominated loadings, Int. J. Plast., 159, 10.1016/j.ijplas.2022.103446
Rousselier, 2014, A fully coupled void damage and Mohr–Coulomb based ductile fracture model in the framework of a reduced texture methodology, Int. J. Plast., 55, 1, 10.1016/j.ijplas.2013.09.002
Rudnicki, 1975, Conditions for the localization of deformation in pressure–sensitive dilatant materials, J. Mech. Phys. Solids, 23, 371, 10.1016/0022-5096(75)90001-0
Saje, 1982, Void nucleation effects on shear localization in porous plastic solids, Int. J. Fract., 19, 163, 10.1007/BF00017128
Shinohara, 2016, Anisotropic ductile failure of a high-strength line pipe steel, Int. J. Fract., 197, 127, 10.1007/s10704-015-0054-x
Srivastava, 2014, Effect of inclusion density on ductile fracture toughness and roughness, J. Mech. Phys. Solids, 63, 62, 10.1016/j.jmps.2013.10.003
Tang, 2015, Development of surface flaw interaction rules for strain-based pipelines, Int. J. Offshore Polar Eng., 25, 45
Tanguy, 2008, Plastic and damage behaviour of a high strength X100 pipeline steel: Experiments and modelling, Int. J. Press. Vess. Pip., 85, 322, 10.1016/j.ijpvp.2007.11.001
Tekoğlu, 2015, On localization and void coalescence as a precursor to ductile fracture, Phil. Trans. R. Soc. A, 373, 10.1098/rsta.2014.0121
Tekoğlu, 2012, A criterion for the onset of void coalescence under combined tension and shear, J. Mech. Phys. Solids, 60, 1363, 10.1016/j.jmps.2012.02.006
Torki, 2018, A mechanism of failure in shear bands, Extreme Mech. Lett., 23, 67, 10.1016/j.eml.2018.06.008
Torki, 2021, An analysis of Lode effects in ductile failure, J. Mech. Phys. Solids, 153, 10.1016/j.jmps.2021.104468
Tvergaard, 1981, Influence of voids on shear band instabilities under plane strain conditions, Int. J. Fract., 17, 389, 10.1007/BF00036191
Tvergaard, 1982, On localization in ductile materials containing spherical voids, Int. J. Fract., 18, 237, 10.1007/BF00015686
Tvergaard, 2009, Behaviour of voids in a shear field, Int. J. Fract., 158, 41, 10.1007/s10704-009-9364-1
Tvergaard, 1984, Analysis of the cup–cone fracture in a round tensile bar, Acta Metall., 32, 157, 10.1016/0001-6160(84)90213-X
Vishwakarma, 2019, Micromechanical modeling and simulation of the loading path dependence of ductile failure by void growth to coalescence, Int. J. Solids Struct., 166, 135, 10.1016/j.ijsolstr.2019.02.015
Zhou, 2014, On the extension of the Gurson-type porous plasticity models for prediction of ductile fracture under shear-dominated conditions, Int. J. Solids Struct., 51, 3273, 10.1016/j.ijsolstr.2014.05.028