A shear modified enhanced Gurson constitutive relation and implications for localization

Journal of the Mechanics and Physics of Solids - Tập 171 - Trang 105153 - 2023
I.A. Khan1, A.A. Benzerga2,3, A. Needleman3
1Reactor Safety Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India
2Department of Aerospace Engineering, Texas A&M University, College Station, TX 77843, USA
3Department of Materials Science & Engineering, Texas A&M University, College Station, TX 77843, USA

Tài liệu tham khảo

Acharyya, 2008, A complete GTN model for prediction of ductile failure of pipe, J. Mater. Sci., 43, 1897, 10.1007/s10853-007-2369-0 Argon, 1975, Separation of inclusions in spheroidized 1045 steel, Cu-0.6% Cr alloy, and maraging steel in plastic straining, Metall. Trans., 6A, 839, 10.1007/BF02672307 Baltic, 2021, Machine learning assisted calibration of a ductile fracture locus model, Mater. Des., 203, 10.1016/j.matdes.2021.109604 Barsoum, 2011, Micromechanical analysis on the influence of the Lode parameter on void growth and coalescence, Int. J. Solids Struct., 48, 925, 10.1016/j.ijsolstr.2010.11.028 Becker, 1986, Effect of yield surface curvature on necking and failure in porous solids, J. Appl. Mech., 53, 491, 10.1115/1.3171801 Benzerga, 2002, Micromechanics of coalescence in ductile fracture, J. Mech. Phys. Solids, 50, 1331, 10.1016/S0022-5096(01)00125-9 Benzerga, 1999, Coalescence–controlled anisotropic ductile fracture, J. Eng. Mater. Technol., 121, 221, 10.1115/1.2812369 Bergo, 2021, Micromechanical modelling of ductile fracture in pipeline steel using a bifurcation-enriched porous plasticity model, Int. J. Fract., 227, 57, 10.1007/s10704-020-00495-7 Besson, 2003, Modeling of plane strain ductile rupture, Int. J. Plast., 19, 1517, 10.1016/S0749-6419(02)00022-0 Brocks, 1995, Verification of the transferability of micromechanical parameters by cell model calculations with visco–plastic materials, Int. J. Plast., 11, 971, 10.1016/S0749-6419(95)00039-9 Cadet, 2022, Strain localization analysis in materials containing randomly distributed voids: Competition between extension and shear failure modes, J. Mech. Phys. Solids, 166, 10.1016/j.jmps.2022.104933 Chu, 1980, Void nucleation effects in biaxially stretched sheets, J. Eng. Mater. Technol., 102, 249, 10.1115/1.3224807 Dæhli, 2018, A lode-dependent Gurson model motivated by unit cell analyses, Eng. Fract. Mech., 190, 299, 10.1016/j.engfracmech.2017.12.023 Dæhli, 2022, Ductile failure predictions using micromechanically-based computational models, J. Mech. Phys. Solids, 164, 10.1016/j.jmps.2022.104873 Dittmanna, 2020, Phase-field modeling of porous-ductile fracture in non-linear thermo-elasto-plastic solids, Comput. Methods Appl. Mech. Engrg., 261 Dunand, 2014, Effect of Lode parameter on plastic flow localization after proportional loading at low stress triaxialities, J. Mech. Phys. Solids, 66, 133, 10.1016/j.jmps.2014.01.008 Gholipoura, 2019, Experimental and numerical investigation of ductile fracture using GTN damage model on in-situ tensile tests, Int. J. Mech. Sci., 164 Gologanu, 1994, Approximate models for ductile metals containing non–spherical voids – case of axisymmetric oblate ellipsoidal cavities, J. Eng. Mater. Technol., 116, 290, 10.1115/1.2904290 Gologanu, 1997, Recent extensions of Gurson’s model for porous ductile metals, 61 Goods, 1979, The nucleation of cavities by plastic deformation, Acta Metall., 27, 1, 10.1016/0001-6160(79)90051-8 Gurland, 1972, Observations on the fracture of cementite particles in a spheroidized 1.05%C steel deformed at room temperature, Acta Metall., 20, 735, 10.1016/0001-6160(72)90102-2 Gurson, 1977, Continuum theory of ductile rupture by void nucleation and growth: part I– yield criteria and flow rules for porous ductile media, J. Eng. Mater. Technol., 99, 2, 10.1115/1.3443401 Hadamard, 1903 He, 2021, An improved shear modified GTN model for ductile fracture of aluminium alloys under different stress states and its parameters identification, Int. J. Mech. Sci., 192, 10.1016/j.ijmecsci.2020.106081 Kamia, 2015, Numerical determination of the forming limit curves of anisotropic sheet metals using gtn damage model, J. Mater. Proc. Tech., 216, 472, 10.1016/j.jmatprotec.2014.10.017 Koplik, 1988, Void growth and coalescence in porous plastic solids, Int. J. Solids Struct., 24, 835, 10.1016/0020-7683(88)90051-0 Luo, 2018, On the prediction of ductile fracture by void coalescence and strain localization, J. Mech. Phys. Solids, 113, 82, 10.1016/j.jmps.2018.02.002 Malcher, 2014, An extended GTN model for ductile fracture under high and low stress triaxiality, Int. J. Plast., 54, 193, 10.1016/j.ijplas.2013.08.015 Marciniak, 1967, Limit strains in the processes of stretch-forming sheet metal, Int. J. Mech. Sci., 9, 609, 10.1016/0020-7403(67)90066-5 Marouani, 2012, Identification of material parameters of the Gurson-Tvergaard-Needleman damage law by combined experimental, numerical sheet metal blanking techniques and artificial neural networks approach, Int. J. Mater. Form., 5, 147, 10.1007/s12289-011-1035-x Morin, 2018, On the description of ductile fracture in metals by the strain localization theory, Int. J. Fract., 209, 27, 10.1007/s10704-017-0236-9 Nahshon, 2008, Modification of the Gurson model for shear failure, Eur. J. Mech. A, 27, 1, 10.1016/j.euromechsol.2007.08.002 Needleman, 1987, A continuum model for void nucleation by inclusion debonding, J. Appl. Mech., 54, 525, 10.1115/1.3173064 Nguyen, 2021, Bayesian calibration of a physics-based crystal plasticity and damage model, J. Mech. Phys. Solids, 149, 10.1016/j.jmps.2020.104284 Nielsen, 2012, Collapse and coalescence of spherical voids subject to intense shearing: studied in full 3D, Int. J. Fract., 177, 97, 10.1007/s10704-012-9757-4 Nielsen, 2010, Ductile shear failure or plug failure of spot welds modelled by modified Gurson model, Eng. Fract. Mech., 77, 1031, 10.1016/j.engfracmech.2010.02.031 Nielsen, 2011, Failure by void coalescence in metallic materials containing primary and secondary voids subject to intense shearing, Int. J. Solids Struct., 48, 1255, 10.1016/j.ijsolstr.2011.01.008 Pardoen, 2000, An extended model for void growth and coalescence, J. Mech. Phys. Solids, 48, 2467, 10.1016/S0022-5096(00)00019-3 Peirce, 1984, A tangent modulus method for rate dependent solids, Comput. Struct., 18, 875, 10.1016/0045-7949(84)90033-6 Rice, 1976, The localization of plastic deformation, 207 Rice, 1969, On the enlargement of voids in triaxial stress fields, J. Mech. Phys. Solids, 17, 201, 10.1016/0022-5096(69)90033-7 Rousselier, 1987, Ductile fracture models and their potential in local approach of fracture, Nucl. Eng. Des., 105, 97, 10.1016/0029-5493(87)90234-2 Rousselier, 2022, Lode-dependent second porosity in porous plasticity for shear-dominated loadings, Int. J. Plast., 159, 10.1016/j.ijplas.2022.103446 Rousselier, 2014, A fully coupled void damage and Mohr–Coulomb based ductile fracture model in the framework of a reduced texture methodology, Int. J. Plast., 55, 1, 10.1016/j.ijplas.2013.09.002 Rudnicki, 1975, Conditions for the localization of deformation in pressure–sensitive dilatant materials, J. Mech. Phys. Solids, 23, 371, 10.1016/0022-5096(75)90001-0 Saje, 1982, Void nucleation effects on shear localization in porous plastic solids, Int. J. Fract., 19, 163, 10.1007/BF00017128 Shinohara, 2016, Anisotropic ductile failure of a high-strength line pipe steel, Int. J. Fract., 197, 127, 10.1007/s10704-015-0054-x Srivastava, 2014, Effect of inclusion density on ductile fracture toughness and roughness, J. Mech. Phys. Solids, 63, 62, 10.1016/j.jmps.2013.10.003 Tang, 2015, Development of surface flaw interaction rules for strain-based pipelines, Int. J. Offshore Polar Eng., 25, 45 Tanguy, 2008, Plastic and damage behaviour of a high strength X100 pipeline steel: Experiments and modelling, Int. J. Press. Vess. Pip., 85, 322, 10.1016/j.ijpvp.2007.11.001 Tekoğlu, 2015, On localization and void coalescence as a precursor to ductile fracture, Phil. Trans. R. Soc. A, 373, 10.1098/rsta.2014.0121 Tekoğlu, 2012, A criterion for the onset of void coalescence under combined tension and shear, J. Mech. Phys. Solids, 60, 1363, 10.1016/j.jmps.2012.02.006 Torki, 2018, A mechanism of failure in shear bands, Extreme Mech. Lett., 23, 67, 10.1016/j.eml.2018.06.008 Torki, 2021, An analysis of Lode effects in ductile failure, J. Mech. Phys. Solids, 153, 10.1016/j.jmps.2021.104468 Tvergaard, 1981, Influence of voids on shear band instabilities under plane strain conditions, Int. J. Fract., 17, 389, 10.1007/BF00036191 Tvergaard, 1982, On localization in ductile materials containing spherical voids, Int. J. Fract., 18, 237, 10.1007/BF00015686 Tvergaard, 2009, Behaviour of voids in a shear field, Int. J. Fract., 158, 41, 10.1007/s10704-009-9364-1 Tvergaard, 1984, Analysis of the cup–cone fracture in a round tensile bar, Acta Metall., 32, 157, 10.1016/0001-6160(84)90213-X Vishwakarma, 2019, Micromechanical modeling and simulation of the loading path dependence of ductile failure by void growth to coalescence, Int. J. Solids Struct., 166, 135, 10.1016/j.ijsolstr.2019.02.015 Zhou, 2014, On the extension of the Gurson-type porous plasticity models for prediction of ductile fracture under shear-dominated conditions, Int. J. Solids Struct., 51, 3273, 10.1016/j.ijsolstr.2014.05.028