Phản ứng chung của protein giống thaumatin, chitinase và protein phong phú giai đoạn sinh sản muộn 3 với các stress môi trường ở cây trà [Camellia sinensis (L.) O. Kuntze]

Springer Science and Business Media LLC - Tập 12 - Trang 565-571 - 2012
Richard Chalo Muoki1,2, Asosii Paul1, Sanjay Kumar1
1Biotechnology Division, Council of Scientific & Industrial Research-Institute of Himalayan Bioresource Technology, Palampur, India
2Tea Research Foundation of Kenya, Kericho, Kenya

Tóm tắt

Hạn hán là một mối đe dọa đáng kể đối với các cây trồng, bao gồm cả cây trà [Camellia sinensis (L.) O. Kuntze], cây tạo ra một loại đồ uống phổ biến là “trà.” Hệ quả của hạn hán là stress nhiệt và muối, tuy nhiên, dữ liệu về phản ứng phân tử trong các loài cây thì còn thiếu. Công trình hiện tại đã phân tích các thư viện cDNA được cắt lọc phản ứng với hạn hán của cây trà để xác định các gen phản ứng với hạn hán. Biểu hiện gen theo thời gian và không gian cho thấy sự tham gia của các protein chaperone như một trong những cơ chế chính để bảo vệ cây chống lại những thiệt hại liên quan đến hạn hán. Phản ứng chung của protein giống thaumatin, chitinase và protein phong phú giai đoạn sinh sản muộn 3 qua bốn loại stress cho thấy những gen này có thể là các mục tiêu hữu ích để tạo ra trà “kháng stress hạn hán.”

Từ khóa

#hạn hán #phản ứng phân tử #cây trà #protein giống thaumatin #chitinase #protein phong phú giai đoạn sinh sản muộn

Tài liệu tham khảo

Balasaravanan T, Pius PK, Raj Kumar R, Muraleedharan N, Shasany AK (2003) Genetic diversity among south Indian tea germplasm (Camellia sinensis, C. assamica and C. assamica spp. lasiocalyx) using AFLP markers. Plant Sci 165:365–372 Bates LS, Waldren RP, Teare ID (1973) Rapid determination of free proline for water–stress studies. Plant Soil 39:205–207 Blum A (1981) Cell membrane stability as a measure of drought and heat tolerance in wheat. Crop Sci 21:43–47 Bogeat-Triboulot M, Brosché M, Renaut J, Jouve L, Thiec DL, Fayyaz P, Vinocur B, Witters E, Laukens K, Teichmann T, Altman A, Hausman J-F, Polle A, Kangasjärvi J, Dreyer E (2007) Gradual soil water depletion results in reversible changes of gene expression, protein profiles, ecophysiology, and growth performance in Populus euphratica, a poplar growing in arid regions. Plant Physiol 143:876–892 Carr MKV (2010) The role of water in the growth of the tea (Camellia sinensis) crop: a synthesis of research in Eastern Africa. 2. Water productivity. Exp Agric 46:351–379 Chakraborty U, Dutta S, Chakraborty BN (2002) Response of tea plants to water stress. Biol Plant 45:557–562 Cheruiyot EK, Mumera LM, Ng’etich WK, Hassanali A, Wachira FN (2010) High fertilizer rates increase susceptibility of tea to water stress. J Plant Nutr 33:115–129 Chinnusamy V, Schumaker K, Zhu J-K (2004) Molecular genetic perspectives on cross-talk and specificity in abiotic stress signalling in plants. J Exp Bot 55:225–236 Cramer GR, Urano K, Delrot S, Pezzotti M, Shinozaki K (2011) Effects of abiotic stress on plants: a systems biology perspective. BMC Plant Biol 11:163 Heath LS, Ramakrishnan N, Sederoff RR, Whetten RW, Chevone BI, Struble CA, Jouenne VY, Chen D, Zyl L, Grene R (2002) Studying the functional genomics of stress responses in loblolly pine with the expresso microarray experiment management system. Comp Func Genom 3:226–243 Ishitani M, Xiong L, Stevenson B, Zhu J (1997) Genetic analysis of osmotic and cold stress signal transduction in Arabidopsis: interactions and convergence of abscisic acid-dependent and abscisic acid-independent pathways. Plant Cell 9:1935–1949 Kim C, Lemke C, Paterson AH (2009) Functional dissection of drought-responsive gene expression patterns in Cynodon dactylon L. Plant Mol Biol 70:1–16 Mittler R (2006) Abiotic stress, the field environment and stress combination. Trends Plant Sci 11:15–19 Munis MFH, Tu L, Deng F, Tan J, Xu L, Xu S, Long L, Zhang X (2010) A thaumatin-like protein gene involved in cotton fiber secondary cell wall development enhances resistance against Verticillium dahliae and other stresses in transgenic tobacco. Biochem Biophys Res Commun 393:38–44 Muoki RC, Paul A, Kumari A, Singh K, Kumar S (2011) An improved protocol for the isolation of RNA from roots of tea (Camellia sinensis (L.) O. Kuntze). Mol Biotechnol. doi:10.1007/s12033-011-9476-5 Paul A, Kumar S (2011) Response to winter dormancy, temperature and hormones share gene network. Funct Integr Genom 11:659–664 Paul A, Lal L, Ahuja PS, Kumar S (2012) Alpha-tubulin (CsTUA) up-regulation during winter dormancy is a low temperature inducible gene in tea [Camellia sinensis (L.) O. Kuntze]. Mol Biol Rep 39:3485–3490 Rabbani MA, Maruyama K, Abe H, Khan MA, Katsura K, Ito Y, Yoshiwara K, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2003) Monitoring expression profiles of rice genes under cold, drought, and high-salinity stresses and abscisic acid application using cDNA microarray and RNA gel-blot analyses. Plant Physiol 133:1755–1767 Rani A, Singh K, Sood P, Kumar S, Ahuja PS (2009) p-Coumarate:CoA ligase as a key gene in the yield of catechins in tea [Camellia sinensis (L.) O. Kuntze]. Funct Integr Genom 9:271–275 Seki M, Narusaka M, Ishida J, Nanjo T, Fujita M, Oono Y, Kamiya A, Nakajima M, Enju A, Sakurai T, Satou M, Akiyama K, Taji T, Yamaguchi-Shinozaki K, Carninci P, Kawai J, Hayashizaki Y, Shinozaki K (2002) Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold and high-salinity stresses using a full-length cDNA microarray. Plant J 31:279–292 Sharma P, Kumar S (2005) Differential display-mediated identification of three drought-responsive expressed sequence tags in tea (Camellia sinensis L. (O.) Kuntze). J Biosci 30:231–235 Singh K, Kumar S, Rani A, Gulati A, Ahuja PS (2009) Phenylalanine ammonia-lyase (PAL) and cinnamate 4-hydroxylase (C4H) and catechins (flavan-3-ols) accumulation in tea. Funct Integr Genom 9:125–134 Talame V, Ozturk NZ, Bohnert HJ, Tuberosa R (2007) Barley transcript profiles under dehydration shock and drought stress treatments: a comparative analysis. J Exp Bot 58:229–240 Wang W, Vinocur B, Shoseyov O, Altman A (2004) Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends Plant Sci 9:244–252 Wijeratne MA (1996) Vulnerability of Sri Lanka tea production to global climate change. Water Air Soil Pollut 92:87–94 Wisniewki M, Bassett C, Norelli J, Macarisin D, Artlip T, Gasic K, Korban S (2008) Expressed sequence tag analysis of the response of apple (Malus × domestica ‘Royal Gala’) to low temperature and water deficit. Physiol Plant 133:298–317 Xiao X, Yang F, Zhang S, Korpelainen H, Li C (2009) Physiological and proteomic responses of two contrasting Populus cathayana populations to drought stress. Physiol Plant 136:150–168 Xu D, Duan X, Wang B, Hong B, Ho TD, Wu R (1996) Expression of a late embryogenesis abundant protein gene, HVA1, from barley confers tolerance to water deficit and salt stress in transgenic rice. Plant Physiol 110:249–257