A sequential elimination algorithm for computing bounds on the clique number of a graph
Tài liệu tham khảo
M. Aouchiche, Comparaison automatisée d’invariants en théorie des graphes. Ph.D. Thesis, École polytechnique de Montréal, 2006
D. Applegate, D. Johnson, Dfmax source code in C. A World Wide Web page ftp://dimacs.rutgers.edu/pub/challenge/graph/solvers/
Bomze, 1999, vol. 4, 1
Brélaz, 1979, New methods to color the vertices of a graph, Communications of the ACM, 22, 251, 10.1145/359094.359101
Galinier, 2006, A survey of local search methods for graph coloring, Computers and Operations Research, 33, 2547, 10.1016/j.cor.2005.07.028
Garey, 1979
Harant, 2002, Forbidden subgraphs and MIN-algorithm for independence number, Discrete Mathematics, 256, 193, 10.1016/S0012-365X(02)00571-X
Hertz, 1987, Using tabu search for graph coloring, Computing, 39, 345, 10.1007/BF02239976
1993, vol. 26, 11
Knuth, 1994, The sandwich theorem, Electronic Journal of Combinatorics, 1, 48, 10.37236/1193
Lovász, 1979, On the Shannon capacity of a graph, IEEE Transactions on Information Theory, 25, 1, 10.1109/TIT.1979.1055985
Pardalos, 1994, The maximum clique problem, Journal of Global Optimization, 4, 301, 10.1007/BF01098364
P. St-Louis, B. Gendron, J.A. Ferland, A penalty-evaporation heuristic in a decomposition method for the maximum clique problem, Working paper, Département d’informatique et de recherche opérationnelle, Université de Montréal, Canada
Szekeres, 1968, An inequality for the chromatic number of graphs, Journal of Combinatorial Theory, 4, 1, 10.1016/S0021-9800(68)80081-X