A sequential elimination algorithm for computing bounds on the clique number of a graph

Discrete Optimization - Tập 5 - Trang 615-628 - 2008
Bernard Gendron1,2, Alain Hertz3,4, Patrick St-Louis1
1Département d’informatique, et de recherche opérationnelle, Université de Montréal, C.P. 6128, succ. Centre-ville, Montréal, Québec H3C 3J7, Canada
2Centre de recherche sur les transports, Université de Montréal, C.P. 6128, succ. Centre-ville, Montréal, Québec H3C 3J7, Canada
3Département de mathématiques et de génie industriel, École Polytechnique de Montréal C.P. 6079, Succ. Centre-Ville, Montréal, Québec, H3C 3A7, Canada
4GERAD, 3000, chemin de la Côte-Sainte-Catherine, Montréal, Québec H3T 2A7, Canada

Tài liệu tham khảo

M. Aouchiche, Comparaison automatisée d’invariants en théorie des graphes. Ph.D. Thesis, École polytechnique de Montréal, 2006 D. Applegate, D. Johnson, Dfmax source code in C. A World Wide Web page ftp://dimacs.rutgers.edu/pub/challenge/graph/solvers/ Bomze, 1999, vol. 4, 1 Brélaz, 1979, New methods to color the vertices of a graph, Communications of the ACM, 22, 251, 10.1145/359094.359101 Galinier, 2006, A survey of local search methods for graph coloring, Computers and Operations Research, 33, 2547, 10.1016/j.cor.2005.07.028 Garey, 1979 Harant, 2002, Forbidden subgraphs and MIN-algorithm for independence number, Discrete Mathematics, 256, 193, 10.1016/S0012-365X(02)00571-X Hertz, 1987, Using tabu search for graph coloring, Computing, 39, 345, 10.1007/BF02239976 1993, vol. 26, 11 Knuth, 1994, The sandwich theorem, Electronic Journal of Combinatorics, 1, 48, 10.37236/1193 Lovász, 1979, On the Shannon capacity of a graph, IEEE Transactions on Information Theory, 25, 1, 10.1109/TIT.1979.1055985 Pardalos, 1994, The maximum clique problem, Journal of Global Optimization, 4, 301, 10.1007/BF01098364 P. St-Louis, B. Gendron, J.A. Ferland, A penalty-evaporation heuristic in a decomposition method for the maximum clique problem, Working paper, Département d’informatique et de recherche opérationnelle, Université de Montréal, Canada Szekeres, 1968, An inequality for the chromatic number of graphs, Journal of Combinatorial Theory, 4, 1, 10.1016/S0021-9800(68)80081-X