A sensitivity analysis of a cost optimality study on the energy retrofit of a single-family reference building in Portugal
Tóm tắt
Improvement of the energy efficiency of residential buildings must ensure compliance with cost optimality criteria, assuming a specific lifespan of the building. At the same time, the energy retrofit of buildings ought to preserve their intrinsic architectural and heritage value. Portuguese residential buildings constructed before 1960 did not follow any energy efficiency rules. They represent 29% of the housing stock in the country and there is a high potential for increasing their energy efficiency. However, it costs more to implement envelope energy efficiency measures through retrofitting works than to provide for them in new buildings. An evaluation based on cost optimality criteria should therefore be performed. This work evaluates the energy performance of a Portuguese reference building typical of the pre-1960 building stock for different thicknesses of thermal insulation retrofit solutions (roof, facade, and ground floor) and systems. The study describes a sensitivity analysis that took a range of climate data, intervention costs, energy prices, discount rates, and energy needs into account. An energy needs factor dealt with the occupants’ habits and the effective reduction of energy consumption compared with the estimated energy needs.
Tài liệu tham khảo
Buildings Performance Institute Europe (2011). Europe’s buildings under the microscope.
National Statistics Institute (2011). Inquérito ao Consumo de Energia no Sector Doméstico - 2010, Directorate General for Energy and Geology, Portugal (in Portuguese).
United Nations Environment Programme (2007). Buildings and climate change.
Portuguese Ministry of Environment (2014). Territorial Planning and Energy, Decree-Law no.53/2014 of 8 April, Regulamento de Desempenho Energético dos Edifícios de Habitação (REH) Diário da República (in Portuguese).
Boeck, L., Verbeke, S., Audenart, A., & Mesmaeker, L. (2001). Improving the energy performance of residential buildings: a literature review. Renewable and Sustainable Energy Reviews, 52, 960–975.
European Commision (2010). Directive 2010/31/EU. Energy Performance of Building Directive.
European Commision (2012). Commission Delegated Regulation (EU) No. 244/12.
Baglivo, C., Congedo, P. M., D’Agostino, D., & Zacà, I. (2015). Cost-optimal analysis and technical comparison between standard and high efficient mono-residential buildings in a warm climate. Energy, 83, 560–575.
Kurnitsk, J., Saari, A., Kalamees, T., Vuolle, M., Niemela, J., & Tark, T. (2011). Cost optimal and nearly zero (nZEB) energy performance calculations for residential buildings with REHVA definition for nZEB national implementation. Energy and Buildings, 43, 3279–3288.
Vasconcelos, A., Pinheiro, M., Manso, A., & Cabaço, A. (2016). EPBD cost-optimal methodology: application to the thermal rehabilitation of the building envelope of a Portuguese residential reference building. Energy and Buildings, 111, 12–25.
Corgnati, S. P., Fabrizio, E., Filippi, M., & Monetti, V. (2013). Reference buildings for cost optimal analysis: method of definition and application. Applied Energy, 102, 983–993.
Loga, T., Diefenbach, N., Stein, B., Balaras, C. A., Villatoro, O. & Wittchen, K. B. (2012). Typology approach for building stock energy assessment. Main Results of the TABULA project, Institut Wohnen und Umwelt GmbH.
INIVE EEIG. (2010). Stimulating increased energy efficiency and better building ventilation. In Brussels.
Bessa, V. M. T., & Prado, R. T. A. (2015). Reduction of carbon dioxide emissions by solar water heating systems and passive technologies in social housing. Energy Policy, 83, 138–150.
Jelle, B. P. (2011). Traditional, state-of-the-art and future thermal building insulation materials and solutions—properties, requirements and possibilities. Energy and Buildings, 43(10), 2549–2563.
Hamdy, M., Hasan, A., & Siren, K. (2013). A multi-stage optimization method for cost-optimal and nearly-zero-energy building solutions in line with the EPBD-recast 2010. Energy and Buildings, 56, 189–203.
Tadeu, S., Simões, N., Gonçalves, M., & Ribeiro, J. (2013). Energy efficiency measures in Portuguese residential buildings constructed before 1960: a cost-optimal assessment, Energy for sustainability 2013—sustainable cities: designing for people and the planet.
Kaynakli, O. (2012). A review of the economical and optimum thermal insulation thickness for building applications. Renewable & Sustainable Energy Reviews, 16(1), 415–425.
Sisman, N., Kahya, E., Aras, N., & Aras, H. (2007). Determination of optimum insulation thicknesses of the external walls and roof (ceiling) for Turkey’s different degree-day regions. Energy Policy, 35(10), 5151–5155.
Axaopoulos, I., Axaopoulos, P. & Gelegenis, J. (2014). Optimum insulation thickness for external walls on different orientations considering the speed and direction of the wind, Applied. Energy, 117, 167–175.
Tadeu, S., Rodrigues, C., Tadeu, A., Freire, F., & Simões, N. (2015). Energy retrofit of historic buildings: environmental assessment of cost-optimal solutions. Journal of Building Engineering, 4, 167–176.
Verbeeck, G., & Hens, H. (2005). Energy savings in retrofitted dwellings: economically viable? Energy and Buildings, 37(7), 747–754.
Nikolaidis, Y., Pilavachi, P. A., & Chletsis, A. (2009). Economic evaluation of energy saving measures in a common type of Greek building. Applied Energy, 86(12), 2550–2559.
Panão, M. J. N. O., Rebelo, M. P., & Camelo, S. M. L. (2013). How low should be the energy required by a nearly zero-energy building? The load/generation energy balance of Mediterranean housing, energy and buildings, 61, 161–171.
Malatji, E. M., Zhang, J., & Xia, X. (2013). A multiple objective optimization model for building energy efficiency investment decision. Energy and Buildings, 61, 81–87.
Ferrara, M., Fabrizio, E., Virgone, J., & Filippi, M. (2014). A simulation-based optimization method for cost-optimal analysis of nearly zero energy buildings. Energy and Buildings, 84, 442–457.
Tadeu, S., Alexandre, R. F., Tadeu, A., Antunes, C. H., & Simões, N. (2016). A comparison between cost optimality and return on investment for energy retrofit in buildings—a real options perspective. Sustainable Cities and Society, 21, 12–25.
Asadi, E., Silva, M. G., Antunes, C. H., & Dias, L. (2012). Multi-objective optimization for building retrofit strategies: a model and an application. Energy and Buildings, 44, 81–87.
Brealey, R. A., Myers, S. C. & Marcus, A. J. (2001). Fundamentals of corporate finance, Third Edn. University of Phoenix.
Ferreira, M., Almeida, M., Rodrigues, A., & Monteiro Silva, S. (2014). Comparing cost-optimal and net-zero energy targets in building retrofit. Building Research & Information. https://doi.org/10.1080/09613218.2014.975412.
Zacà, I., D’Agostino, D., Congedo, P. M., & Baglivo, C. (2015). Assessment of cost-optimality and technical solutions in high performance multi-residential buildings in the Mediterranean area. Energy and Buildings, 102, 250–265.
Zanghari, P., Armani, R., Pietrobon, M., & Pagliano, L. (2017). Identification of cost-optimal and NZEB refurbishment levels for representative climates and building typologies across Europe. Energy Efficiency, 11, 337–369.
Kumbaroğlu, G., & Madlener, R. (2012). Evaluation of economically optimal retrofit investment options for energy savings in buildings. Energy and Buildings, 49, 327–334.
European Committee for Standardization (2008). ISO 13790, Energy performance of buildings—calculation of energy use for space heating and cooling.
Portuguese Ministry of Construction (1990). Transports and Communications, Decree-Law no.40/90 of 6 April, Regulamento das Características de Comportamento Térmico dos Edifícios, RCCTE. Diário da República (in Portuguese).
Vasconcelos, A., Pinheiro, M., Manso, A., & Cabaço, A. (2015). A Portuguese approach to define reference buildings for cost-optimal methodologies. Applied Energy, 140, 316–328.
Bragança, L., Wetzel, C. & Buhagiar, V. (2007). COST C16—improving the quality of existing urban building envelopes—facades and roofs. IOS Press.
ADENE (2014). Portal SCE - Sistema Certificação Energética dos Edifícios. www.adene.pt/sce (acessed 2014).
Serra, C., Simões, N., Tadeu, S. & Tadeu, A. (2013). Definition of reference buildings for energy performance calculation—Portuguese case, Energy for sustainability 2013—sustainable cities: designing for people and the planet.
Portuguese Ministry of Economy and Employment (2013). Decree-Law no.118/2013 of 20 August, Diário da República, (in Portuguese).
Internacional Energy Agency (2013), Modernising building energy codes.
Ferreira, M., Almeida, M., & Rodrigues, A. (2013). Cost optimality and nZEB target in the renovation of Portuguese building stock—Rainha Dina Leonor neighborhood case study. Sustainable Building Conference SB13 Proceedings, 3542.
European Comission (2013). EU Energy, transport and GHG emissions: trends to 2050, Reference Scenario 2013.
Energy Services Regulatory Authority (2015). Reference prices in the liberalized market of electricity and natural gas in continental Portugal (in Portuguese).
Caixa Geral de Depósitos (2015), Credit for rehabilitation (in Portuguese).
Sunikka-Blank, M., & Galvin, R. (2012). Introducing the pre-bound effect: the gap between performance and actual energy consumption. Building Research & Information, 40(3), 260–273.
European Committee for Standardization (2007). EN 15459. Energy performance of buildings—economic evaluation procedure for energy systems in buildings.
CYPE Ingenieros, S. A. (2013). Gerador de preços para construção civil, http://www.geradordeprecos.info/ (accessed 2013) (in Portuguese).
ECOFYS (2007). U-values—for better energy performance of buildings, European Insulation Manufactures Association.
Portuguese Ministry of Environment (2015). Territorial Planning and Energy, Order no.379-A/2015 of 22 October, Diário da República (in Portuguese).
Eurostat (2013). Electricity and natural gas price statistics—statistics explained, http://epp.eurostat.ec.europa.eu/statistics_explained/index.php/Electricity_and_natural_gas_price_statistics (accessed 2013).