A semi-parametric quantile regression approach to zero-inflated and incomplete longitudinal outcomes

AStA Advances in Statistical Analysis - Tập 104 - Trang 261-283 - 2020
Jayabrata Biswas1, Pulak Ghosh2, Kiranmoy Das1
1Interdisciplinary Statistical Research Unit, Applied Statistics Division, Indian Statistical Institute, Kolkata, India
2Department of Decision Sciences and Center of Public Policy, Indian Institute of Management, Bangalore, India

Tóm tắt

Quantile regression models are typically used for modeling non-Gaussian outcomes, and such models allow quantile-specific inference. While there exists a vast literature on conditional quantile regression (where the model parameters are estimated precisely for one prefixed quantile level), relatively less work has been reported on joint quantile regression. The challenge in joint quantile regression is to avoid quantile crossing while estimating multiple quantiles simultaneously. In this article, we propose a semi-parametric approach of handling non-Gaussian zero-inflated and incomplete longitudinal outcomes. We use a two-part model for handling the excess zeros, and propose a dynamic joint quantile regression model for the nonzero outcomes. A multinomial probit model is used for modeling the missingness. We develop a Bayesian joint estimation method where the model parameters are estimated through Markov Chain Monte Carlo. The unknown distribution of the outcome can be constructed based on the estimated quantiles. We analyze data from the health and retirement study and model the out-of-pocket medical expenditure through the proposed joint quantile regression method. Simulation studies are performed to assess the practical usefulness and efficiency of the proposed approach compared to the existing methods.

Tài liệu tham khảo

Albert, J., Chib, S.: Bayesian analysis of binary and polychotomous response data. J. Am. Stat. Assoc. 88, 669–679 (1993) Alfo, M. et al.: M-quantile regression for multivariate longitudinal data: analysis of the Millennium Cohort Study data. arXiv:1612.08114 (2016) Amemiya, T.: Tobit models: a survey. J. Econom. 24, 3–61 (1984) Bhuyan, P., Biswas, J., Ghosh, P., Das, K.: A Bayesian two-stage regression approach of analyzing longitudinal outcomes with endogeneity and incompleteness. Stat. Model. 19, 157–173 (2018) Biswas, J., Das, K.: A Bayesian approach of analyzing semi-continuous longitudinal data with monotone missingness. Stat. Model. 20, 148–170 (2019) Brown, S., Ghosh, P., Taylor, K.: Modelling household finances: a Bayesian approach to a multivariate two-part model. J. Empir. Finance 33, 190–207 (2015) Duan, N., Manning, W., Morris, C., Newhouse, J.P.: A comparison of alternative models for the demand for medical care (Corr: V2 P413). J. Bus. Econ. Stat. 1, 115–126 (1983) Farewell, V.T., Long, D.L., Tom, B.D.M., Yiu, S., Su, L.: Two-part and related regression models for longitudinal data. Annu. Rev. Stat. Appl. 4, 283–315 (2017) Geraci, M., Bottai, M.: Quantile regression for longitudinal data using the asymmetric Laplace distribution. Biostatistics 8, 140–154 (2007) Geraci, M., Bottai, M.: Linear quantile mixed models. Stat. Comput. 24, 461–479 (2014) Hall, D.: Zero-inflated Poisson and binomial regression with random effects: a case study. Biometrics 56, 1030–1039 (2000) Jang, W., Wang, H.: A semiparametric Bayesian approach for joint-quantile regression with clustered data. Comput. Stat. Data Anal. 84, 99–115 (2015) King, C., Song, J.J.: A Bayesian two-part quantile regression model for count data with excess zeros. Stat. Model. 19, 653–673 (2019) Koenker, R., Bassett, G.: Regression quantiles. Econometrica 46, 33–50 (1978) Koenker, R.: Quantile regression for longitudinal data. J. Multivar. Anal. 91, 74–89 (2004) Koenker, R.: Quantile Regression. Cambridge University Press, Cambridge (2005) Kozumi, H., Kobayashi, G.: Gibbs sampling methods for Bayesian quantile regression. J. Stat. Comput. Simul. 81, 1565–1578 (2011) Kulkarni, H., Biswas, J., Das, K.: A joint quantile regression model for multiple longitudinal outcomes. Adv. Stat. Anal. 103, 453–473 (2018) Laird, N., Ware, J.: Random effects model for longitudinal data. Biometrics 38, 963–974 (1982) Lambert, D.: Zero-inflated Poisson regression, with an application to defects in manufacturing. Technometrics 34, 1–14 (1992) Mukherji, A., Roychoudhury, S., Ghosh, P., Brown, S.: Estimating health demand for an aging population: a flexible and robust Bayesian joint model. J. Appl. Econom. 31, 1140–1158 (2016) Olsen, M., Schafer, J.: A two-part random-effects model for semi-continuous longitudinal data. J. Am. Stat. Assoc. 96, 730–745 (2001) Reich, B., Fuentes, M., Dunson, D.: Bayesian spatial quantile regression. J. Am. Stat. Assoc. 106, 6–20 (2011) Rodrigues, T., Fan, Y.: Regression adjustment for non-crossing Bayesian quantile regression. J. Comput. Graph. Stat. 26, 275–284 (2017) Santos, B., Bolfarine, H.: Bayesian analysis for zero-or-one inflated proportion data using quantile regression. J. Stat. Comput. Simul. 85, 3579–3593 (2015) Santos, B., Bolfarine, H.: Bayesian quantile regression analysis for continuous data with a discrete component at zero. Stat. Model. 18, 73–93 (2018) Yu, K., Moyeed, R.: Bayesian quantile regression. Stat. Probab. Lett. 54, 437–447 (2001) Yuan, Y., Yin, G.: Bayesian quantile regression for longitudinal studies with nonignorable missing data. Biometrics 66, 105–114 (2010) Zhu, J., Santerre, R., Chang, X.-W.: A Bayesian method for linear, inequality-constrained adjustment and its application to GPS positioning. J. Geod. 78, 528–534 (2005)