A semi-concurrent multiscale approach for modeling damage in nanocomposites

Theoretical and Applied Fracture Mechanics - Tập 74 - Trang 30-38 - 2014
Mohammad Silani1,2, Saeed Ziaei-Rad1, Hossein Talebi3, Timon Rabczuk2,4
1Department of Mechanical Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
2Institute of Structural Mechanics, Bauhaus-University Weimar, Marienstr. 15, D-99423 Weimar, Germany
3Graduiertenkolleg 1462, Bauhaus-Universitaet Weimar, Berkaer Str. 9, 99423 Weimar, Germany
4Tongji University, School of Aerospace Engineering and Applied Mechanics, China

Tóm tắt

Từ khóa


Tài liệu tham khảo

M.F. Horstemeyer, Multiscale modeling: a review, in: Practical Aspects of Computational Chemistry, 2010, pp. 87–135.

Fish, 1993, Multiscale finite element method for a locally nonperiodic heterogeneous medium, Comput. Mech., 12, 164, 10.1007/BF00371991

Fish, 2005, Multiscale enrichment based on partition of unity, Int. J. Numer. Meth. Eng., 62, 1341, 10.1002/nme.1230

Gracie, 2009, Concurrently coupled atomistic and xfem models for dislocations and cracks, Int. J. Numer. Meth. Eng., 78, 354, 10.1002/nme.2488

V. Kouznetsova, Computational Homogenization for the MULTI-Scale Analysis of Multi-phase Materials, PhD Thesis, Netherlands Institute for Metals Research, The Netherlands, 2002.

Belytschko, 2010, Coarse-graining of multiscale crack propagation, Int. J. Numer. Meth. Eng., 81, 537, 10.1002/nme.2694

Tadmor, 1996, Quasicontinuum analysis of defects in solids, Philos. Mag. A, 73, 1529, 10.1080/01418619608243000

Miller, 2002, The quasicontinuum method: overview, applications and current directions, J. Comput.-Aided Mater. Des., 9, 203, 10.1023/A:1026098010127

H.B. Dhia, The Arlequin Method: a Partition of Models for Concurrent Multiscale Analyses (further insight and mathematical investigations).

Abraham, 1998, Spanning the length scales in dynamic simulation, Comput. Phys., 12, 538, 10.1063/1.168756

Loehnert, 2007, A multiscale projection method for macro/microcrack simulations, Int. J. Numer. Meth. Eng., 71, 1466, 10.1002/nme.2001

Guidault, 2008, A multiscale extended finite element method for crack propagation, Comput. Meth. Appl. Mech. Eng., 197, 381, 10.1016/j.cma.2007.07.023

Cresta, 2007, Nonlinear localization strategies for domain decomposition methods: application to post-buckling analyses, Comput. Meth. Appl. Mech. Eng., 196, 1436, 10.1016/j.cma.2006.03.013

Aubertin, 2009, Energy conservation of atomistic/continuum coupling, Int. J. Numer. Meth. Eng., 78, 1365, 10.1002/nme.2542

Gitman, 2008, Coupled-volume multi-scale modelling of quasi-brittle material, Eur. J. Mech.-A/Solids, 27, 302, 10.1016/j.euromechsol.2007.10.004

Talebi, 2014, A computational library for multiscale modeling of material failure, Comput. Mech., 53, 1047, 10.1007/s00466-013-0948-2

Talebi, 2013, Molecular dynamics/xfem coupling by a three-dimensional extended bridging domain with applications to dynamic brittle fracture, Int. J. Multiscale Comput. Eng., 11, 527, 10.1615/IntJMultCompEng.2013005838

Feyel, 2000, FE2 multiscale approach for modeling the elastoviscoplastic behavior of long fiber sic/ti composite materials, Comput. Meth. Appl. Mech. Eng., 183, 309, 10.1016/S0045-7825(99)00224-8

Kouznetsova, 2002, Multi-scale constitutive modeling of heterogeneous materials with a gradient-enhanced computational homogenization scheme, Int. J. Numer. Meth. Eng., 54, 1235, 10.1002/nme.541

Nguyen, 2011, Homogenization-based multiscale crack modelling: from micro-diffusive damage to macro-cracks, Comput. Meth. Appl. Mech. Eng., 200, 1220, 10.1016/j.cma.2010.10.013

Verhoosel, 2010, Computational homogenization for adhesive and cohesive failure in quasi-brittle solids, Int. J. Numer. Meth. Eng., 83, 1155, 10.1002/nme.2854

Belytschko, 2008, Multiscale aggregating discontinuities: a method for circumventing loss of material stability, Int. J. Numer. Meth. Eng., 73, 869, 10.1002/nme.2156

Jafari, 2010, Comprehensive investigation on hierarchical multiscale homogenization using representative volume element for piezoelectric nanocomposites, Compos. Part B: Eng., 42, 553, 10.1016/j.compositesb.2010.10.010

Dai, 2008, Predictions of stiffness and strength of nylon 6/mmt nanocomposites with an improved staggered model, Compos. Part B: Eng., 39, 1062, 10.1016/j.compositesb.2007.09.005

Sheng, 2004, Multiscale micromechanical modeling of polymer/clay nanocomposites and the effective clay particle, Polymer, 45, 487, 10.1016/j.polymer.2003.10.100

Azeez, 2013, Epoxy clay nanocomposites – processing, properties and applications: a review, Compos. Part B: Eng., 45, 308, 10.1016/j.compositesb.2012.04.012

Sankar, 2004, Nanocomposites: foreword, Compos. Part B: Eng., 35, 75, 10.1016/j.compositesb.2003.12.001

Scocchi, 2009, A complete multiscale modelling approach for polymer clay nanocomposites, Chem.-Eur. J., 15, 7586, 10.1002/chem.200900995

Scocchi, 2007, To the nanoscale, and beyond!. multiscale molecular modeling of polymer–clay nanocomposites, Fluid Phase Equilib., 261, 366, 10.1016/j.fluid.2007.07.046

Scocchi, 2007, Polymerclay nanocomposites: a multiscale molecular modeling approach, J. Phys. Chem. B, 111, 2143, 10.1021/jp067649w

Zappalorto, 2012, A multiscale model to describe nanocomposite fracture toughness enhancement by the plastic yielding of nanovoids, Compos. Sci. Technol., 72, 1683, 10.1016/j.compscitech.2012.07.010

Salviato, 2013, Plastic shear bands and fracture toughness improvements of nanoparticle filled polymers: a multiscale analytical model, Compos. Part A: Appl. Sci. Manuf., 48, 144, 10.1016/j.compositesa.2013.01.006

Lauke, 2008, On the effect of particle size on fracture toughness of polymer composites, Compos. Sci. Technol., 68, 3365, 10.1016/j.compscitech.2008.09.011

Lauke, 2013, Effect of particle size distribution on debonding energy and crack resistance of polymer composites, Comput. Mater. Sci., 77, 53, 10.1016/j.commatsci.2013.04.017

Williams, 2010, Particle toughening of polymers by plastic void growth, Compos. Sci. Technol., 70, 885, 10.1016/j.compscitech.2009.12.024

Hsieh, 2010, The toughness of epoxy polymers and fibre composites modified with rubber microparticles and silica nanoparticles, J. Mater. Sci., 45, 1193, 10.1007/s10853-009-4064-9

Nafar Dastgerdi, 2014, Micromechanical modeling of nanocomposites considering debonding of reinforcements, Compos. Sci. Technol., 93, 38, 10.1016/j.compscitech.2013.12.020

Park, 2010, Mathematical modeling of nanocomposite properties considering nanoclay/epoxy debonding, J. Reinf. Plast. Compos., 29, 1230, 10.1177/0731684409102764

Sevostianov, 2007, Effect of interphase layers on the overall elastic and conductive properties of matrix composites. applications to nanosize inclusion, Int. J. Solids Struct., 44, 1304, 10.1016/j.ijsolstr.2006.06.020

Wang, 2011, Nanoreinforced polymer composites: 3d fem modeling with effective interface concept, Compos. Sci. Technol., 71, 980, 10.1016/j.compscitech.2011.03.003

Brisard, 2010, Hashin–shtrikman bounds on the shear modulus of a nanocomposite with spherical inclusions and interface effects, Comput. Mater. Sci., 50, 403, 10.1016/j.commatsci.2010.08.032

Li, 2011, A closed-form, hierarchical, multi-interphase model for composites derivation, verification and application to nanocomposites, J. Mech. Phys. Solids, 59, 43, 10.1016/j.jmps.2010.09.015

Zappalorto, 2011, Influence of the interphase zone on the nanoparticle debonding stress, Compos. Sci. Technol., 72, 49, 10.1016/j.compscitech.2011.09.016

Saber-Samandari, 2007, An experimental study on clay/epoxy nanocomposites produced in a centrifuge, Compos. Part B: Eng., 38, 102, 10.1016/j.compositesb.2006.03.010

Fu, 2008, Effects of particle size, particle/matrix interface adhesion and particle loading on mechanical properties of particulate–polymer composites, Compos. Part B: Eng., 39, 933, 10.1016/j.compositesb.2008.01.002

Ha, 2010, Temperature effects on the fracture behavior and tensile properties of silane-treated clay/epoxy nanocomposites, Compos. Part B: Eng., 41, 602, 10.1016/j.compositesb.2010.09.015

Chan, 2011, Mechanism of reinforcement in a nanoclay/polymer composite, Compos. Part B, Eng., 42, 1708, 10.1016/j.compositesb.2011.03.011

Hill, 1967, The essential structure of constitutive laws for metal composites and polycrystals, J. Mech. Phys. Solids, 15, 79, 10.1016/0022-5096(67)90018-X

Hashin, 1983, Analysis of composite materials, J. Appl. Mech., 50, 481, 10.1115/1.3167081

M.C. Boyce, D.M. Parks, N. Sheng, et al., Multiscale Micromechanical Modeling of the Thermal/Mechanical Properties of Polymer/Clay Nanocomposites. PhD Thesis, Massachusetts Institute of Technology, 2006.

Chia, 2007, Finite element modelling epoxy/clay nanocomposites, Key Eng. Mater., 334, 785, 10.4028/www.scientific.net/KEM.334-335.785

Hbaieb, 2007, Modelling stiffness of polymer/clay nanocomposites, Polymer, 48, 901, 10.1016/j.polymer.2006.11.062

Tehrani, 2011, Mesomechanical modeling of polymer clay nanocomposites using a viscoelastic–viscoplastic–viscodamage constitutive model, J. Eng. Mater. Technol., Trans. ASME, 133, 10.1115/1.4004696

Barbero, 2001, A constitutive model for elastic damage in fiber-reinforced pmc laminae, Int. J. Damage Mech., 10, 73, 10.1106/6PQ6-31JW-F69K-74LU

Ju, 2001, A micromechanical damage model for effective elastoplastic behavior of partially debonded ductile matrix composites, Int. J. Solids Struct., 38, 6307, 10.1016/S0020-7683(01)00124-X

Wang, 2005, Epoxy nanocomposites with highly exfoliated clay: mechanical properties and fracture mechanisms, Macromolecules, 38, 788, 10.1021/ma048465n

Lemaitre, 1996, vol. 2

Voyiadjis, 2005

Lemaitre, 1978, Aspect phénoménologique de la rupture par endommagement, J. Méc. Appl., 2

Silani, 2012, On the experimental and numerical investigation of clay/epoxy nanocomposites, Compos. Struct., 94, 3142, 10.1016/j.compstruct.2012.04.033