A self-supported NiMoS4 nanoarray as an efficient 3D cathode for the alkaline hydrogen evolution reaction

Journal of Materials Chemistry A - Tập 5 Số 32 - Trang 16585-16589
Weiyi Wang1,2,3,4, Lin Yang1,2,3,4, Fengli Qu2,5,6,7, Zhiang Liu2,5,6,7, Guoping Du8,9,2, Abdullah M. Asiri10,11,12,13,14, Yadong Yao1,2,3,4, Liang Chen2,15,16,17, Xuping Sun1,2,18,4
1Chengdu 610064
2China
3College of Materials Science and Engineering, Sichuan University, Chengdu, 610064, Sichuan, China
4Sichuan University
5College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China
6Qufu 273165
7Qufu Normal University
8Chengdu 610081
9Chengdu Institute of Geology and Mineral Resources, Chengdu 610081, Sichuan, China
10Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
11Faculty of Science
12Jeddah 21589
13King Abdulaziz University
14Saudi Arabia
15Chinese Academy of sciences
16Ningbo 315201
17Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, Zhejiang, China
18College of Chemistry, Sichuan University, Chengdu, 610064, Sichuan, China

Tóm tắt

A NiMoS4 nanoarray on Ti mesh (NiMoS4/Ti), developed via topotactic hydrothermal conversion from its Ni(OH)2 nanoarray (Ni(OH)2/Ti), drives hydrogen-evolution current densities of 10 and 50 mA cm−2 at overpotentials of 194 and 263 mV in 0.1 M KOH, respectively.

Từ khóa


Tài liệu tham khảo

Crabtree, 2004, Phys. Today, 57, 39, 10.1063/1.1878333

Nocera, 2012, Acc. Chem. Res., 45, 767, 10.1021/ar2003013

Morales-Guio, 2014, Acc. Chem. Res., 47, 2671, 10.1021/ar5002022

Walter, 2010, Chem. Rev., 110, 6446, 10.1021/cr1002326

Hernández-Pagán, 2012, Energy Environ. Sci., 5, 7582, 10.1039/c2ee03422k

Zeng, 2010, Prog. Energy Combust. Sci., 36, 307, 10.1016/j.pecs.2009.11.002

McKone, 2013, ACS Catal., 3, 166, 10.1021/cs300691m

Lv, 2015, J. Am. Chem. Soc., 137, 5859, 10.1021/jacs.5b01100

Jiang, 2014, Nanoscale, 6, 13440, 10.1039/C4NR04866K

Popczun, 2013, J. Am. Chem. Soc., 135, 9267, 10.1021/ja403440e

Feng, 2014, Phys. Chem. Chem. Phys., 16, 5917, 10.1039/c4cp00482e

Wang, 2015, Angew. Chem., Int. Ed., 54, 8188, 10.1002/anie.201502577

Danilovic, 2012, Angew. Chem., Int. Ed., 51, 12495, 10.1002/anie.201204842

Luo, 2014, Science, 345, 1593, 10.1126/science.1258307

Tran, 2013, Energy Environ. Sci., 6, 2452, 10.1039/c3ee40600h

Yu, 2015, Angew. Chem., Int. Ed., 54, 5331, 10.1002/anie.201500267

Yang, 2015, Appl. Surf. Sci., 341, 149, 10.1016/j.apsusc.2015.03.018

Wu, 2015, RSC Adv., 5, 32976, 10.1039/C5RA01414J

Tang, 2015, Electrochim. Acta, 153, 508, 10.1016/j.electacta.2014.12.043

Tang, 2015, Angew. Chem., Int. Ed., 54, 9351, 10.1002/anie.201503407

Merki, 2011, Energy Environ. Sci., 4, 3878, 10.1039/c1ee01970h

Hinnemann, 2005, J. Am. Chem. Soc., 127, 5308, 10.1021/ja0504690

Laursen, 2012, Energy Environ. Sci., 5, 5577, 10.1039/c2ee02618j

Karunadasa, 2012, Science, 335, 698, 10.1126/science.1215868

Jaramillo, 2007, Science, 317, 100, 10.1126/science.1141483

Bonde, 2009, Faraday Discuss., 140, 219, 10.1039/B803857K

Chen, 2011, Nano Lett., 11, 4168, 10.1021/nl2020476

Merki, 2012, Chem. Sci., 3, 2515, 10.1039/c2sc20539d

Jiang, 2016, Angew. Chem., Int. Ed., 55, 15240, 10.1002/anie.201607651

Kibsgaard, 2012, Nat. Mater., 11, 963, 10.1038/nmat3439

Roy-Mayhew, 2012, ACS Appl. Mater. Interfaces, 4, 2794, 10.1021/am300451b

Jiang, 2014, Angew. Chem., Int. Ed., 53, 12855, 10.1002/anie.201406848

Tian, 2014, Angew. Chem., Int. Ed., 53, 9577, 10.1002/anie.201403842

Ren, 2014, Angew. Chem., Int. Ed., 53, 7223, 10.1002/anie.201403461

Xia, 2014, Small, 10, 766, 10.1002/smll.201302224

Zhao, 2014, ACS Nano, 8, 10909, 10.1021/nn504755x

Sawhill, 2005, J. Catal., 231, 300, 10.1016/j.jcat.2005.01.020

Ma, 2017, Inorg. Chem. Front., 4, 840, 10.1039/C6QI00594B

Martin-Aranda, 1995, Appl. Catal., A, 127, 201, 10.1016/0926-860X(95)00037-2

Ozkar, 1992, Chem. Mater., 4, 1380, 10.1021/cm00024a046

Voiry, 2013, Nano Lett., 13, 6222, 10.1021/nl403661s

Vrubel, 2012, Energy Environ. Sci., 5, 6136, 10.1039/c2ee02835b

Shao, 2016, Electrochim. Acta, 213, 236, 10.1016/j.electacta.2016.07.113

Xu, 2013, Angew. Chem., Int. Ed., 52, 8546, 10.1002/anie.201303495

Tang, 2016, Nano Lett., 16, 6617, 10.1021/acs.nanolett.6b03332

Conway, 2002, Electrochim. Acta, 47, 3571, 10.1016/S0013-4686(02)00329-8

Boudart, 1995, Chem. Rev., 95, 661, 10.1021/cr00035a009

Merki, 2011, Chem. Sci., 2, 1262, 10.1039/C1SC00117E

Tian, 2014, J. Am. Chem. Soc., 136, 7587, 10.1021/ja503372r

Shin, 2015, Langmuir, 31, 1196, 10.1021/la504162u

Xie, 2013, Adv. Mater., 25, 5807, 10.1002/adma.201302685

Nøskov, 2005, J. Electrochem. Soc., 152, J23, 10.1149/1.1856988